mirror of
https://github.com/jackyzha0/quartz.git
synced 2025-12-28 07:14:05 -06:00
97 lines
4.1 KiB
Markdown
97 lines
4.1 KiB
Markdown
---
|
||
title: Hilbert Transform Envelope
|
||
tags:
|
||
- signal-processing
|
||
- algorithm
|
||
- envelope
|
||
date: 2024-02-28
|
||
---
|
||
|
||
# Introduction
|
||
|
||

|
||
|
||
# Envelope Explanation
|
||
## Envelope and Fine Structure
|
||
|
||
* Envelope:
|
||
* The envelope of a signal represents the slowly varying amplitude or outline of the signal. It provides a smooth curve that encapsulates the main shape of the signal, ignoring the rapid oscillations or fluctuations. The envelope is typically associated with the low-frequency components of a signal.
|
||
* Fine Structure:
|
||
* The fine structure of a signal refers to the detailed, high-frequency components or rapid oscillations present in the signal. It captures the fast variations that occur on a shorter time scale compared to the envelope.
|
||
|
||
|
||
# Algorithm Detail
|
||
|
||
## History
|
||
|
||
* 1905年---Hilbert在研究黎曼-希尔伯特问题时提出希尔伯特变换,而他关于离散希尔伯特变换的早期工作可追溯到他在哥根廷的讲课。
|
||
* Hermann Weyl在他的学位论文中发表了离散希尔伯特变换的结论。
|
||
* Schur改进了离散希尔伯特变换的结果,并将其扩展到了积分条件下。
|
||
|
||
**而将Hilbert变换运用到信号处理中还得追溯到解析信号表达的建立。**
|
||
|
||
> [!hint]
|
||
> "传统经典的信号研究方法主要概括为基于傅里叶变换的谱分析、基于概率分布的统计分析和其它随机信号表示方法,同时还有起源于很早的典型谱、相关和分布特征,而这些分析方法研究的**一个基本考虑是将随机信号表达为两个独立函数的乘积**”
|
||
>
|
||
|
||
早期关于包络和瞬时相位的研究都是基于笛卡尔坐标系x-y
|
||
|
||

|
||
|
||
有关系:
|
||
$$
|
||
\begin{align}
|
||
A^2 & = x^2+y^2 \\
|
||
\varphi & = \arctan{\frac{y}{x}}
|
||
\end{align}
|
||
$$
|
||
这样的表达被引入傅里叶序列中,$x_k = \sum a_k\cos\varphi_k + b_k\sin\varphi_k$, 其幅度和相位均可由上面笛卡尔坐标系中的两个关系得到,此时坐标$(x,y)$就是$(a_k,b_k)$。 用这种方法研究调制信号的包络和瞬时相位依赖于一个伟大的公式:
|
||
|
||
$$
|
||
e^{i\varphi} = \cos{\varphi} + i\sin{\varphi}
|
||
$$
|
||
|
||
1946年, Gabor先生定义了复函数更一般化的欧拉公式
|
||
|
||
$$
|
||
Y(t) = u(t) + iv(t)
|
||
$$
|
||
这里的$v(t)$是$\mu(t)$的希尔伯特变换
|
||
|
||
1998年,Huang在现代希尔伯特变换研究领域做出了显著性工作 —— EMD、HHT,使得希尔伯特变换理论在现代信号分析中遍地开花
|
||
|
||
|
||
## Analytical Signal
|
||
|
||
|
||
|
||
## Mathematical description
|
||
|
||
The mathematical description of the Hilbert transform is to **rotate the Fourier components in complex area**.
|
||
|
||
$$
|
||
H(\mu)(t) = \frac{1}{\pi} \text{p.v.} \int_{\infty}^{\infty} \frac{\mu(t)}{t-\tau}d\tau
|
||
$$
|
||
|
||

|
||
|
||
|
||
The Hilbert transform is given by the [Cauchy principal value](math/real_analysis/cauchy_principal_value.md) of the convolution with the function $1/(\pi t)$.
|
||
|
||
## Geometrical meaning of HT
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# Reference
|
||
|
||
* [Mathuranathan. “Extract Envelope, Phase Using Hilbert Transform: Demo.” _GaussianWaves_, 24 Apr. 2017, https://www.gaussianwaves.com/2017/04/extract-envelope-instantaneous-phase-frequency-hilbert-transform/.](https://www.gaussianwaves.com/2017/04/extract-envelope-instantaneous-phase-frequency-hilbert-transform/)
|
||
* [_CFC: What Does the Hilbert Transform Do? (V9)_. _www.youtube.com_, https://www.youtube.com/watch?v=-CjnFEOopfw. Accessed 2 Jan. 2024.](https://www.youtube.com/watch?v=-CjnFEOopfw)
|
||
* [_Extract Envelope and Fine Structure in Praat Using the Hilbert Transform_. _www.youtube.com_, https://www.youtube.com/watch?v=qp1G3a2g8r0. Accessed 2 Jan. 2024.](https://www.youtube.com/watch?v=qp1G3a2g8r0)
|
||
* [“希尔伯特变换与瞬时频率问题--连载(一).” 知乎专栏, https://zhuanlan.zhihu.com/p/25213895. Accessed 2 Jan. 2024.](https://zhuanlan.zhihu.com/p/25213895)
|
||
* [_The Hilbert Transform_. _www.youtube.com_, https://www.youtube.com/watch?v=VyLU8hlhI-I. Accessed 3 Jan. 2024.](https://www.youtube.com/watch?v=VyLU8hlhI-I)
|
||
|