--- title: Hilbert Transform Envelope tags: - signal-processing - algorithm - envelope date: 2024-02-28 --- # Introduction ![](signal_processing/envelope/attachments/Pasted%20image%2020240103160713.png) # Envelope Explanation ## Envelope and Fine Structure * Envelope: * The envelope of a signal represents the slowly varying amplitude or outline of the signal. It provides a smooth curve that encapsulates the main shape of the signal, ignoring the rapid oscillations or fluctuations. The envelope is typically associated with the low-frequency components of a signal. * Fine Structure: * The fine structure of a signal refers to the detailed, high-frequency components or rapid oscillations present in the signal. It captures the fast variations that occur on a shorter time scale compared to the envelope. # Algorithm Detail ## History * 1905年---Hilbert在研究黎曼-希尔伯特问题时提出希尔伯特变换,而他关于离散希尔伯特变换的早期工作可追溯到他在哥根廷的讲课。 * Hermann Weyl在他的学位论文中发表了离散希尔伯特变换的结论。 * Schur改进了离散希尔伯特变换的结果,并将其扩展到了积分条件下。 **而将Hilbert变换运用到信号处理中还得追溯到解析信号表达的建立。** > [!hint] > "传统经典的信号研究方法主要概括为基于傅里叶变换的谱分析、基于概率分布的统计分析和其它随机信号表示方法,同时还有起源于很早的典型谱、相关和分布特征,而这些分析方法研究的**一个基本考虑是将随机信号表达为两个独立函数的乘积**” > 早期关于包络和瞬时相位的研究都是基于笛卡尔坐标系x-y ![](signal_processing/envelope/attachments/Pasted%20image%2020240102155308.png) 有关系: $$ \begin{align} A^2 & = x^2+y^2 \\ \varphi & = \arctan{\frac{y}{x}} \end{align} $$ 这样的表达被引入傅里叶序列中,$x_k = \sum a_k\cos\varphi_k + b_k\sin\varphi_k$, 其幅度和相位均可由上面笛卡尔坐标系中的两个关系得到,此时坐标$(x,y)$就是$(a_k,b_k)$。 用这种方法研究调制信号的包络和瞬时相位依赖于一个伟大的公式: $$ e^{i\varphi} = \cos{\varphi} + i\sin{\varphi} $$ 1946年, Gabor先生定义了复函数更一般化的欧拉公式 $$ Y(t) = u(t) + iv(t) $$ 这里的$v(t)$是$\mu(t)$的希尔伯特变换 1998年,Huang在现代希尔伯特变换研究领域做出了显著性工作 —— EMD、HHT,使得希尔伯特变换理论在现代信号分析中遍地开花 ## Analytical Signal ## Mathematical description The mathematical description of the Hilbert transform is to **rotate the Fourier components in complex area**. $$ H(\mu)(t) = \frac{1}{\pi} \text{p.v.} \int_{\infty}^{\infty} \frac{\mu(t)}{t-\tau}d\tau $$ ![](signal_processing/envelope/attachments/Pasted%20image%2020240102150350.png) The Hilbert transform is given by the [Cauchy principal value](math/real_analysis/cauchy_principal_value.md) of the convolution with the function $1/(\pi t)$. ## Geometrical meaning of HT # Reference * [Mathuranathan. “Extract Envelope, Phase Using Hilbert Transform: Demo.” _GaussianWaves_, 24 Apr. 2017, https://www.gaussianwaves.com/2017/04/extract-envelope-instantaneous-phase-frequency-hilbert-transform/.](https://www.gaussianwaves.com/2017/04/extract-envelope-instantaneous-phase-frequency-hilbert-transform/) * [_CFC: What Does the Hilbert Transform Do? (V9)_. _www.youtube.com_, https://www.youtube.com/watch?v=-CjnFEOopfw. Accessed 2 Jan. 2024.](https://www.youtube.com/watch?v=-CjnFEOopfw) * [_Extract Envelope and Fine Structure in Praat Using the Hilbert Transform_. _www.youtube.com_, https://www.youtube.com/watch?v=qp1G3a2g8r0. Accessed 2 Jan. 2024.](https://www.youtube.com/watch?v=qp1G3a2g8r0) * [“希尔伯特变换与瞬时频率问题--连载(一).” 知乎专栏, https://zhuanlan.zhihu.com/p/25213895. Accessed 2 Jan. 2024.](https://zhuanlan.zhihu.com/p/25213895) * [_The Hilbert Transform_. _www.youtube.com_, https://www.youtube.com/watch?v=VyLU8hlhI-I. Accessed 3 Jan. 2024.](https://www.youtube.com/watch?v=VyLU8hlhI-I)