4.1 KiB
L11 Continuous Distributions (WMS 4.1-3)
-
Continuous random variables
-
Infinite domain, e.g. sleep hours
x\in\lbrack 6,9\rbrack -
Philosophical view: continuous functions conveniently approximate discrete world, or world is truly infinite but measurement is imprecise
-
-
Probability density function (pdf)
f(x)-
Measures relative likelihood of individual
xvalues -
Individual
xvalues occur with zero probability (and\int_7^8f(x) > 1is possible); to find probabilities, must take definite integralP(7 < X < 8) = f(x)\text{dx} -
Density must be non-negative and integrate to one over domain (just like probabilities sum to one)
-
Example
f(x) = k(- x^{2} + 16x - 60);6\leq x\leq 9- Not directly from (finite) data; maybe from calibrated theory
- Find
k-
1 = \int_6^9f(x)dx = k\lbrack -\frac{1}{3}x^{3} + 8x^{2} - 60x\rbrack_{6}^{9} = k\lbrack (- 243 + 648 - 540) -(- 72 + 288 - 360)\rbrack = 9krequires thatk =\frac{1}{9} -
That is,
f(x) = -\frac{1}{9}x^{2} +\frac{16}{9}x -\frac{60}{9};6\leq x\leq 9
-
- Mode solves
f^{'}(x) = -\frac{2}{9}kx +\frac{16}{9}k = 0; solution atx = 8-
Note: if
f^{'}(x)everywhere positive/negative then maximum is at highest/lowestxin range -
Note: second-order condition
f^{''}(x) = -\frac{2}{9}k\leq 0satisfied as long ask\geq 0
-
- Probabilities:
P(7\leq x\leq 8) =\frac{1}{9}(- x^{2} + 16x - 60)dx =\ldots =\frac{11}{27}\approx 0.4
-
-
Cumulative distribution function (cdf)
F(x)-
$F(x) = P(X\leq x) =\frac{1}{9}(- {\widetilde{x}}^{2} + 16\widetilde{x} - 60)d\widetilde{x}$
=\lbrack -\frac{1}{27}{\widetilde{x}}^{3} +\frac{8}{9}{\widetilde{x}}^{2} -\frac{20}{3}\widetilde{x}\rbrack_{\widetilde{x} = 6}^{\widetilde{x} = x} = -\frac{1}{27}x^{3} +\frac{8}{9}x^{2} -\frac{20}{3}x + 16(This assumes6\leq x\leq 9; ifx < 6thenF(x) = 0and if $x > 9$thenF(x) = 1) -
Percentiles Median
F(x) = -\frac{1}{27}x^{3} +\frac{8}{9}x^{2} -\frac{20}{3}x + 16 =\frac{1}{2}; solving by computer,x\approx 7.875^{th}percentileF(x) = -\frac{1}{27}x^{3} +\frac{8}{9}x^{2} -\frac{20}{3}x + 16 = .75\Rightarrow x\approx 8.495^{th}percentileF(x) = -\frac{1}{27}x^{3} +\frac{8}{9}x^{2} -\frac{20}{3}x + 16 = .90\Rightarrow x\approx 8.7 -
Easier probabilities $P(7\leq X\leq 8) = F(8) - F(7)$
=(-\frac{1}{27}8^{3} +\frac{8}{9}8^{2} -\frac{20}{3}8 + 16) -(-\frac{1}{27}7^{3} +\frac{8}{9}7^{2} -\frac{20}{3}7 + 16) =\frac{11}{27}\approx 0.4 -
From cdf, get pdf
f(x) = F^{'}(x) = -\frac{1}{9}x^{2} +\frac{16}{9}x -\frac{60}{9};6\leq x\leq 9, elsef(x) = 0
-
-
Moments
- Mean
\mu = E(X) =\int\text{xf}(x)\text{dx}(just likeE(X) =\sum xP(x))= \int_6^9x\frac{1}{9}(- x^{2} + 16x - 60)\text{dx}=\int_6^9\frac{1}{9}(- x^{3} + 16x^{2} - 60x)dx =\ldots =\frac{31}{4}\approx 7.75
- Mean
- Standard deviation
- $E(X^{2}) = \int_6^9x^{2}f(x)\text{dx}$
= \int_6^9x^{2}\frac{1}{9}(- x^{2} + 16x - 60)dx =\int_6^9\frac{1}{9}(- x^{4} + 16x^{3} - 60x^{2})dx =\ldots =\frac{303}{5}
- $E(X^{2}) = \int_6^9x^{2}f(x)\text{dx}$
ii. V(X) = E(X^{2}) -\mu^{2} =\frac{303}{5} -(\frac{31}{4})^{2} =\frac{43}{80}
iii. \sigma_{X} =\sqrt{\frac{43}{80}}\approx 0.73
- Note: algebra tricks still work (e.g. lost wages while sleeping)
E(\$ 20X) =\$ 20E(X) =\$ 20\cdot 7.75 =\$ 155V(20X) = 20^{2}V(X)
-
Practice describing steps to classmate: Warehouse stock (as fraction of capacity)
f(x) = - 2x^{2} + kx +\frac{1}{6};0\leq x\leq 1-
Find
k = 3 -
mode
=\frac{3}{4} -
Draw and interpret pdf (upside-down parabola; warehouse full more often than empty)
-
Find cdf
F(x) = -\frac{2}{3}x^{3} +\frac{3}{2}x^{2} +\frac{1}{6}x;0\leq x\leq 1 -
Find
f(x)fromF(x) -
P(\frac{1}{2}\leq X\leq\frac{3}{4}) =\frac{5}{16} -
median
\approx .6, 75^th^ percentile\approx .8 -
mean
\mu\approx 0.58 -
standard deviation
\sigma\approx 0.26 -
Insurance payout
\pi =\$ 1,000,000X +\$ 100,000E(\pi) =\$ 1,000,000\mu +\$ 100,000 =\$ 680,000$\sigma_{\pi} = \sqrt{V($1,000,000X+$100,000)} =$ 1,000,000\sigma_{x} =$ 260,000$
-