mirror of
https://github.com/jackyzha0/quartz.git
synced 2025-12-30 16:24:06 -06:00
121 lines
2.7 KiB
Markdown
121 lines
2.7 KiB
Markdown
---
|
||
title: Chirp - 啁啾
|
||
tags:
|
||
- basic
|
||
- signal
|
||
date: 2023-06-30
|
||
---
|
||
|
||
啁啾(Chirp)是指频率随时间而改变(增加或减少)的信号。其名称来源于这种信号听起来类似鸟鸣的啾声。
|
||
|
||

|
||
|
||
Chirp常常被用在sonar, radar, laser systems里。其中,为了能够测量长距离又保留时间的分辨率,雷达需要短时间的派冲波但是又要持续的发射信号,啁啾信号可以同时保留连续信号和脉冲的特性,因此被应用在雷达和声纳探测上。
|
||
|
||
# Definition
|
||
|
||
## 瞬时频率 (instantaneous angular frequency)
|
||
|
||
|
||
有一信号,$x(t)=A\sin{(\phi(t))}$,其瞬时角频率为
|
||
$$
|
||
\omega(t)=\frac{d\phi(t)}{dt}
|
||
$$
|
||
经适当归一化后得到瞬时频率
|
||
$$
|
||
f(t)=\frac{1}{2\pi}\frac{d\phi(t)}{dt}
|
||
$$
|
||
|
||
## 啁啾度
|
||
|
||
对前两式再求导,得到瞬时角频率的变化速率为**瞬时角啁啾度**(instantaneous angular chirpyness)
|
||
|
||
$$
|
||
\gamma(t)=\frac{d^2\phi(t)}{dt^2}
|
||
$$
|
||
类似有**瞬时(普通)啁啾度**(instantaneous ordinary chirpyness)
|
||
|
||
$$
|
||
c(t)=\frac{1}{2\pi}\gamma(t)=\frac{1}{2\pi}\frac{d^2\phi(t)}{dt^2}
|
||
$$
|
||
# Types
|
||
|
||
## Linear
|
||
|
||

|
||
|
||
啁啾的瞬时频率$f(t)$呈线性变化
|
||
|
||
$$f(t)=f_0 + ct$$
|
||
$$
|
||
c = \frac{f_1-f_0}{T}
|
||
$$
|
||
|
||
c是一个常值
|
||
|
||
Also,
|
||
|
||
$$
|
||
\phi(t)=\phi_0 + 2\pi \int_{0}^t f(\tau)d\tau =\phi_0 = 2\pi(\frac{c}{2}t^2 + f_0 t)
|
||
$$
|
||
|
||
相位为t的二次函数,从而可以继续推导出信号在time domain:
|
||
|
||
$$
|
||
x(t)=A \cos{(\phi_0 + 2\pi (\frac{c}{2}t^2 + f_0 t))}
|
||
$$
|
||
|
||
这种Linear Chirp信号也被称为二次相位讯号(**quadratic-phase signal**)
|
||
|
||
## Exponential
|
||
|
||

|
||
|
||
Exponential chirp,也叫geometric chirp,瞬时频率以指数变化,即$f(t_2)/f(t_1)$会是常数
|
||
|
||
signal frequency:
|
||
|
||
$$
|
||
f(t)=f_0 k^t
|
||
$$
|
||
|
||
$$
|
||
k = (\frac{f(T)}{f_0})^{\frac{1}{T}} = \text{constant}
|
||
$$
|
||
|
||
相位:
|
||
|
||
$$
|
||
\phi(t)=\phi_0 + 2\pi\int_0^t f(\tau)d\tau = \phi_0 + 2\pi f_0 (\frac{k^t - 1}{\ln(k)})
|
||
$$
|
||
|
||
time-domain:
|
||
|
||
$$
|
||
x(t) = \sin{[\phi_0 + 2\pi f_0(\frac{k^t - 1}{\ln(k)})]}
|
||
$$
|
||
|
||
## Hyperbolic
|
||
|
||
双曲线线性调频用于雷达应用,因为它们在被多普勒效应([Doppler Effect](physics/wave/doppler_effect.md))扭曲后显示出最大的匹配滤波器([Matched filter](https://en.wikipedia.org/wiki/Matched_filter))响应。
|
||
|
||
signal frequency:
|
||
|
||
$$
|
||
f(t) = \frac{f_0 f_1 T}{(f_0 - f_1)t + f_1T}
|
||
$$
|
||
|
||
Phase:
|
||
|
||
$$
|
||
\phi(t) = \phi_0 + 2\pi \int_0^t f(\tau)d\tau = \phi_0 + 2\pi \frac{-f_0f_1 T}{f_1 - f_0}\ln(1 - \frac{f_1-f_0}{f_1 T}t)
|
||
$$
|
||
|
||
|
||
time-domain:
|
||
|
||
$$
|
||
x(t) = \sin{[\phi_0 + 2\pi \frac{-f_0f_1 T}{f_1 - f_0}\ln(1 - \frac{f_1-f_0}{f_1 T}t)]}
|
||
$$
|
||
|