4.1 KiB
L12 Continuous Joint Distributions (WMS 5.1-8)
- Joint Density
- Compare discrete/continuous pdf and joint pdf
- Warehouse stocks up to two pallets of cereal
Xand one pallet of cerealY, with densityf(x,y) = c(x + 2y);x\in\lbrack 0,2\rbrack,y\in\lbrack 0,1\rbrack. - Height of joint pdf represents likelihood of particular
(x,y)pairs. Must integrate to one (double integral).1 = \int_{x=0}^{2}\int_{y=0}^1c(x + 2y)dydx = \int_{x=0}^{2}(cx + c)dx = 4crequiresc =\frac{1}{4}, orf(x,y) =\frac{1}{4}x +\frac{1}{2}y;x\in\lbrack 0,2\rbrack,y\in\lbrack 0,1\rbrack.
- Mode: since upward sloping in both dimensions, mode at
(x,y) = (2,1)
-
Marginal densities
-
Analogous to margins of table in discrete joint distribution: total probability of particular realization of
xis the sum of all joint probabilities of(x,y)pairs, with that particularxvalue, but anyyvalue in domain. -
f_{x}(x) =\int_{y=0}^{1}\frac{1}{4}(x + 2y)dy =\frac{1}{4}x +\frac{1}{4};x\in\lbrack 0,2\rbrack -
f_{y}(y) =\int_{x=0}^{2}\frac{1}{4}(x + 2y)dx =\frac{1}{2} + y;y\in\lbrack 0,1\rbrack -
Subscript simply distinguishes
f_{x}(.5)fromf_{y}(.5) -
Moments: means, standard deviations
- $\mu_{x} = E(X) = \int_{x=0}^{2}xf_{x}(x)\text{dx}$
= \int_{x=0}^{2}x(\frac{1}{4}x +\frac{1}{4})dx =\frac{2}{3} +\frac{1}{2} =\frac{7}{6} - $E(X^{2}) = \int_{x=0}^{2}x^{2}f_{x}(x)\text{dx}$
= \int_{x=0}^{2}x^{2}(\frac{1}{4}x +\frac{1}{4})dx = 1 +\frac{2}{3} =\frac{5}{3} V(X) = E(X^{2}) -\mu_{x}^{2} =\frac{5} {3} -(\frac{7}{6})^{2} =\frac{11}{36}\sigma_{x} = \sqrt{V(X)} =\sqrt{\frac{11}{36}}\approx .55- $\mu_{y} = E(Y) = \int_{y=0}^{1}yf_{y}(y)\text{dy}$
= \int_{y=0}^{1}y(\frac{1}{2} + y)dy =\frac{1}{4} +\frac{1}{3} =\frac{7}{12} - $E(Y^{2}) = \int_{y=0}^{1}y^{2}f_{y}(y)\text{dy}$
= \int_{y=0}^{1}y^{2}(\frac{1}{2} + y)dy =\frac{1}{6} +\frac{1}{4} =\frac{5}{12} V(Y) = E(Y^{2}) -\mu_{y}^{2} =\frac{5}{12} -(\frac{7}{12})^{2} =\frac{11}{144}\sigma_{y} = \sqrt{Y} =\sqrt{\frac{11}{144}}\approx 0.28- Could also derive mode, median, cdf, percentiles of
XorY
-
- Independence requires
f(x,y) = f_{x}(x)f_{y}(y)for all(x,y)pairs.XandYnot independent here, sincef(x,y) =\frac{1}{4}(x + 2y)\neq(\frac{1}{4}x +\frac{1}{4})(\frac{1}{2} + y)(e.g. when(x,y) = (0,0))
-
Correlation
-
$E(\text{XY}) =\int_{x=0}^{2}\int_{y=0}^{1}\text{xyf}(x,y)\text{dydx}$
=\int_{x=0}^{2}\int_{y=0}^{1}\text{xy}\lbrack\frac{1}{4}(x + 2y)\rbrack dydx =\int_{x=0}^{2}(\frac{1}{8}x^{2} +\frac{1}{6}x)dx =\frac{1}{3} +\frac{1}{3} =\frac{2}{3} -
$\sigma_{\text{xy}} = Cov(X,Y) = E(\text{XY}) -\mu_{x}\mu_{y}$
=\frac{2}{3} -(\frac{7}{6})(\frac{7}{12}) = -\frac{1}{72} -
\rho =\frac{\sigma_{\text{xy}}}{\sigma_{x}\sigma_{y}} =\frac{-\frac{1}{72}}{(.55)(.28)}\approx - .09
-
-
Practice example:
f(x,y) = c(1 - xy)forx,y\in\lbrack 0,1\rbrack-
Find
c:\int_{x=0}^{1}\int_{y=0}^{1}c(1 - xy)dydx =\frac{3}{4}cimpliesc =\frac{4}{3} -
Find marginal densities
f_{x},f_{y}:f_{x}(x) =\int_{y=0}^1\frac{4}{3}(1 - xy)dy =\ldots =\frac{4}{3} -\frac{2}{3}xforx\in\lbrack 0,1\rbrack; symmetrically,f_{y}(y) =\frac{4}{3} -\frac{2}{3}yfory\in\lbrack 0,1\rbrack -
Find means
\mu_{x}and\mu_{y}and standard deviations\sigma_{x}and\sigma_{y}:\mu_{x} = E(X) = \int_{x=0}^1x(\frac{4}{3} -\frac{2}{3}x)dx =\ldots =\frac{4}{9}E(X^{2}) = \int_{x=0}^1x^{2}(\frac{4}{3} -\frac{2}{3}x)dx =\ldots =\frac{5}{18}\sigma_{x}^{2} =\frac{5}{18} -(\frac{4}{9})^{2} =\frac{13}{162}\sigma_{x} =\sqrt{\frac{13}{162}}\approx .283Symmetrically,\mu_{y} =\frac{4}{9},\sigma_{y}\approx .283
-
- Correlation
\rho:E(\text{XY}) =\int_{x=0}^1\int_{y=0}^1\text{xy}\frac{4}{3}(1 - xy)dydx =\frac{5}{27}\sigma_{\text{xy}} = E(\text{XY}) -\mu_{x}\mu_{y}\approx\frac{5}{27} -(\frac{4}{9})^{2} = -\frac{1}{81}\approx - .012\rho =\frac{\sigma_{\text{xy}}}{\sigma_{x}\sigma_{y}} =\frac{-\frac{1}{81}}{\sqrt{\frac{13}{162}}\sqrt{\frac{13}{162}}} = -\frac{2}{13}\approx - 0.154