7.2 KiB
L1 Math Preview
-
Spiritual thought: like Joseph in Egypt, your time at BYU is 7 years of plenty (spiritual abundance). Likely less so when you go to graduate school or workforce. Store up all you can now (e.g. devotionals, religion classes, student ward, ministering), like wise virgins with oil lamps, to sustain you as you "go forth to serve"
-
In a similar (but temporal) way, this lecture and HW 1 seek to fill your "math lamps" in preparation for the rest of the semester.
-
Factorials
-
5! = 5\cdot 4\cdot 3\cdot 2\cdot 1 -
0! = 1
-
-
Exponents
e\approx 2.7denotes growth 1.$1 invested at 100% interest, compound annually, equals$2 a year later 2.$1 invested at 100% interest, compound continuously, equals$2.72 a year later
| Expression | Simplified / Rewritten |
|---|---|
x^{- 1} |
1/x |
x^{1/2} |
\sqrt(x) |
x^{0} |
1 |
x^{2}x^{3} |
x^{5} |
(x^{2})^{3} |
x^{6} |
e^{x}e^{y} |
e^{x + y} |
e^{x}/e^{y} |
e^{x - y} |
e^{x + y} |
e^{x}e^{y} |
e^{x - y} |
e^{x}/e^{y} |
-
Logarithms
-
100 = 2(How many powers of$10$ give you$100?)\log(.01)= - 2
-
\ln(100)\approx 4.6(How many powers ofe\approx 2.7give you100?)\ln(.01)= - 4.6
-
Logs makes huge numbers smaller, miniscule numbers (e.g. probabilities) bigger
-
Inverse of exponents
\ln(e^{5})= 5(How many powers ofedoes it take to reache^{5}?)e^{\ln(5)} = 5(It takes\ln(5)powers ofeto make5; what if we takeeto that many powers?)
-
| Expression | Simplified / Rewritten |
|---|---|
\ln(\text{xy}) |
\ln(x)+\ln(y) |
\ln(\frac{x}{y}) |
\ln(x)-\ln(y) |
\ln(2x) |
\neq 2\ln(x);$\neq\ln(2)\ln(x)$;$=\ln(2)+\ln(x)$ |
\ln(x^{2}) |
2ln(x) |
\ln(x + y) |
Can't simplify |
\ln(x)+\ln(y) |
\ln(\text{xy}) |
\ln(x)-\ln(y) |
\ln(\frac{x}{y}) |
2ln(x) |
\ln(x^{2}) |
-
Summation
-
\sum_{k=1}^5k^{2} = 1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} = 55 -
Column of
n = 500observations can be denoted byx_{i}, withi = 1,\ldots,n -
\frac{1}{n}\sum_{i=1}^nx_{i}denotes the average -
\sum_{i=1}^n3x_{i} = 3\sum_{i=1}^nx_{i} -
\sum_{i=1}^n(x_{i} + y_{i}) = \sum_{i=1}^nx_{i} + \sum_{i=1}^ny_{i} -
\sum_{i=1}^n(x_{i} + 3) = \sum_{i=1}^nx_{i} + \sum_{i=1}^n3 = \sum_{i=1}^nx_{i} + 3n -
Does
\sum_{i=1}^n(x_{i}y_{i}) = \sum_{i=1}^nx_{i}\sum_{i=1}^ny_{i}? No!- e.g.
2\cdot 3 + 5\cdot 4\neq (2 + 5)(3 + 4)
- e.g.
-
-
Derivatives
-
Intuition: limit of slope
-
Finding maximum/minimum
- First-order condition:
f^{'}(x) = 0 - Second-order condition:
f^{''}(x)negative for max (slope is decreasing, function makes a frown), positive for min (slope is increasing, function makes a smile)
- First-order condition:
-
Simple derivatives
-
f(x) |
f^{'}(x) |
|---|---|
x^{3} |
3x^{2} |
4x |
4 |
4 |
0 |
\frac{1}{x} |
-\frac{1}{x^{2}} |
\sqrt{x} |
\frac{1}{2}x^{-\frac{1}{2}} =\frac{1}{2\sqrt{x}} |
e^{x} |
e^{x} |
ln(x) |
\frac{1}{x} |
-
Product rule:
\frac{d}{\text{dx}}\lbrack f(x)g(x)\rbrack = f^{'}(x)g(x) + f(x)g'(x)\frac{d}{\text{dx}}x^{2}\ln(x)= 2x\ln(x)+ x^{2}(\frac{1}{x})- Same pattern for products of 100 terms
-
Chain rule:
\frac{d}{\text{dx}}f(g(x)) = f^{'}(g(x))g^{'}(x) =\frac{\text{df}}{\text{dg}}\frac{\text{dg}}{\text{dx}}- Example:
\frac{d}{\text{dx}}\ln(x^{2} - 3x + 1)=\frac{1}{x^{2} - 3x + 1}\cdot (2x - 3) - Example:
\frac{d}{\text{dx}}e^{- 3x^{2}} = e^{- 3x^{2}}(- 6x) - Same pattern for longer chains
- Example:
-[The Quotient rule is useful as well, but I won't require it here.]
-
Integrals
- Intuition
- "sum"/area under
f(negative iff < 0) - Anti-derivative: add up
\int_a^b f'(x)dxto getf(b) - f(a)
- "sum"/area under
- Intuition
f(x) |
Anti-derivative of f(x) |
|---|---|
x^{2} |
\frac{1}{3}x^{3} |
4 |
4x |
\frac{1}{x^{2}} |
-\frac{1}{x} |
\sqrt{x} |
\frac{2}{3}x^{\frac{3}{2}} |
e^{x} |
e^{x} |
x(x - 1) |
\frac{1}{3}x^{3} -\frac{1}{2}x^{2} |
-
Definite integral $\int_4^7 x^{2}dx =\lbrack\frac{1}{3}x^{3}\rbrack_{x = 4}^{7}$
=\frac{1}{3}(7)^{3} -\frac{1}{3}(4)^{3} =\frac{343}{3} -\frac{64}{3} = 93\int_7^4 x^{2}dx =\frac{64}{3} -\frac{343}{3} = - 93
-
Useful techniques that I won't cover (or expect you to know)
- $u$-substitution (chain rule in reverse)
- Integration by Parts (product rule in reverse)
-
Double Integrals
- Simple: inside integral then outside integral
\int_{y=1}^3\int_{x=0}^2x^{2}ydxdy =\int_{y=1}^3\lbrack\frac{y}{3}x^{3}\rbrack_{x = 0}^{x = 2}dy =\int_{y=1}^3\frac{8}{3}ydy =\ldots =\frac{32}{3}
ii. Note: for rectangular bounds (i.e. bounds of x don't depend on y, and vice versa), can integrate in reverse order
\int_{y=1}^2\int_{x=0}^3x^{2}ydydx =\int_{y=1}^3\lbrack\frac{1}{2}x^{2}y^{2}\rbrack_{y = 1}^{y = 3}dx =\int_{x=0}^2 4x^{2}dx =\ldots =\frac{32}{3}
iii. Practice \int_{y=1}^3\int_{x=0}^2e\frac{x}{y}\text{dxdy}