4.0 KiB
Exam 1 Review
-
Spiritual thought: prayer through life's trials, faith without works is dead, obedience gives confidence
-
Exam info
Exam 1 Review
-
Spiritual thought: prayer through life's trials, faith without works is dead, obedience gives confidence
-
Exam info
-
Any calculator
-
No time limit, predict 2-3 hours
-
Handout provided
-
Hard: typically C average
-
-
Study tips
-
Take it seriously: equal weight with final exam
-
Start with study guide
-
Practice exams (first without solutions, then with)
-
Extra homework problems (or repeat homework problems)
-
Time saver: talk through steps, don't work out algebra
-
-
Exam strategies
-
Don't forget to pray!
-
Extend familiar material to unfamiliar settings (good practice for real world)
-
Difficulty is similar to homework, but no TAs or books, so fewer A's than homework
-
Average score is typically C, which averaged with A- homework gives B- overall.
-
Show work and list what you know for partial credit (e.g.
\rho =\frac{\sigma_{\text{xy}}}{\sigma_{x}\sigma_{y}}, even if you can't figure out\sigma_{\text{xy}})
-
-
Key formulas
-
Binary events
P(E) =\frac{\# E}{\# S}C_{k}^{n} =\frac{n!}{k!(n - k)!}P(A\cup B) = P(A) + P(B) - P(A\cap B)- Independent events:
P(A\cap B) = P(A)P(B)(orP(B) = P(A)) P(B) =\frac{P(A\cap B)}{P(B)}P(A\cap B) = P(B|A)P(A)
-
Random variables
- Legitimate distribution?
\sum P(x) =\int f(x)dx = 1 - Mode maximizes
P(x)orf(x)(i.e.f^{'}(x) = 0andf^{''}(x) < 0) \mu = E(X) =\sum xP(x) =\int xf(x)\text{dx}E(X^{3}) =\sum x^{3}P(x) =\int x^{3}f(x)\text{dx}\sigma^{2} = V(X) = E\lbrack(X -\mu)^{2}\rbrack = E(X^{2}) -\mu^{2};\sigma =\sqrt{V(X)}F(x) = \int_{-\infty}^xf(\widetilde{x})d\widetilde{x},f(x) = F'(x)P(a < X < b) = F(b) - F(a)- Percentile: solve
F(\phi_{.5}) = .5 f(x) = F'(x)
- Legitimate distribution?
-
Joint distributions
- Legitimate joint distribution?
\sum\sum P(x,y) =\iint_{}^{}f(x,y)dxdy = 1 - Marginal distribution
P_{x}(x) = P(x,y)f_{x}(x) =\int f(x,y)\text{dy} - Independent variables
P(x,y) = P_{x}(x)P_{y}(y)f(x,y) = f_{x}(x)f_{y}(y) E(\frac{X}{Y}) =\sum\sum(\frac{x}{y})P(x,y) =\iint_{}^{}(\frac{x}{y})f(x,y)\text{dxdy}\text{Cov}(X,Y) = E\lbrack(X -\mu_{x})(Y -\mu_{y})\rbrack = E(\text{XY}) -\mu_{x}\mu_{y}\rho =\frac{\text{Cov}(X,Y)}{\sigma_{x}\sigma_{y}}- Conditional distribution
P(X=x|Y = 3) =\frac{P(x,3)}{P_{y}(3)}f_{x}(x|Y = 3) =\frac{f(x,3)}{f_{y}(3)} E(X|Y = 3) =\sum xP(x|Y = 3) =\int xf(x|Y = 3)\text{dx}V(X|Y = 3) = E(X^2|Y = 3) -\lbrack E(X|Y = 3)\rbrack^{2}
- Legitimate joint distribution?
-
Regressions
\beta_{1} =\frac{\sigma_{\text{xy}}}{\sigma_{x}^{2}} =\rho\frac{\sigma_{y}}{\sigma_{x}}\beta_{0} =\mu_{y} - b\mu_{x}\frac{V(a + bX)}{V(Y)} =\rho^{2}\varepsilon_{i} = Y_{i} -(\beta_{0} +\beta_{1}X_{i})
-
-
Algebra tricks
-
E(\$ 100 -\$ 5X) =\$ 100 -\$ 5E(X) -
V(\$ 100 -\$ 5X +\$ 3Y) = V(\$ 100) + V(-\$ 5X) + V(\$ 3Y) + 2Cov(-\$ 5X,\$ 3Y) = 0 +(\$ 5)^{2}V(X) +(\$ 3)^{2}V(Y) -\$ 30Cov(X,Y) -
\text{Cov}(\$ 100 -\$ 5X,Y) = Cov(\$ 100,Y) + Cov(-\$ 5,Y) = 0 -\$ 5Cov(X,Y) -
\text{Corr}(\$ 100 -\$ 5X,Y) = Corr(- X,Y) = - Corr(X,Y)
-
-
Distributional relationships
-
If
X\sim Nthen3X\sim NandX + 7\sim N -
If
X_{1},X_{2}\sim NthenX_{1} + X_{2}\sim N -
If
Z\sim N(0,1)thenZ^{2}\sim\chi^{2}(1) -
If
W_{1}\sim\chi^{2}(3),W_{2}\sim\chi^{2}(5)independent thenW_{1} + W_{2}\sim\chi^{2}(8)and\frac{W_{1}/3}{W2/5}\sim F(3,5) -
If
Z\sim N(0,1)andW\sim\chi^{2}(\nu)independent then\frac{Z}{}\sim t(\nu)
-
-
Rejoice in how much we've learned!