mirror of
https://github.com/jackyzha0/quartz.git
synced 2025-12-24 13:24:05 -06:00
2.0 KiB
2.0 KiB
| title | aliases | tags | |
|---|---|---|---|
| tree-traversal | traversal |
|
Visit each node in the tree once. So we need to visit n, all the nodes in L, and all the nodes in R. We can do this in four different ways
- Preorder: Root, left, right
- Postorder: Left, right, root
- Inorder: Left, Root Right (produces ordered list in a BST)
- Level order: root, all the roots children, all their children, etc
Creating an BST from an array using the Add Operation operation then doing an inorder traversal is effectively a quicksort
Code
Usually traversals ideas used in algorithms, not independent methods
Pre order
private void preorder(Node n, ArrayList<String> r){
if(n==null) return;
r.add(n.key); //add this node the reults
preorder(n.left, r); //traverse the left subtree
preorder(r.right, r); //traverse the right subtree
}
Post order
private void postorder(Node n, ArrayList<String> r){
if(n==null) return;
postorder(n.left, r); //traverse the left subtree
postorder(r.right, r); //traverse the right subtree
r.add(n.key); //add this node the reults
}
In order
private void inorder(Node n, ArrayList<String> r){
if(n==null) return;
inorder(n.left, r); //traverse the left subtree
r.add(n.key); //add this node the reults
inorder(r.right, r); //traverse the right subtree
}
Level order
Only traversal that is not naturally recursive. Maintains a queue of pending visits. Using a stack with this methods produces a preorder
public Arraylist<String> levelorder() {
ArrayList<String> result = new ArrayList<>();
if(isEmpty()) return result;
ArrayDeque<Node> q = new ArrayDeque<>();
q.add(root)
while (!q.isEmpty()) {
Node n = q.remove()
result.add(n.key);
if(n.left != null) q.add(n.left);
if(n.right != null) q.add(n.right);
}
return result;
}