mirror of
https://github.com/jackyzha0/quartz.git
synced 2025-12-29 07:44:06 -06:00
62 lines
4.0 KiB
Markdown
62 lines
4.0 KiB
Markdown
---
|
||
title: Q factor
|
||
tags:
|
||
- physics
|
||
- electric
|
||
- electromagnetism
|
||
- basic
|
||
---
|
||
|
||
# Explanation
|
||
|
||
In physics and engineering, the quality factor or Q factor is a **dimensionless** parameter that describes how **underdamped** an oscillator or *resonator* is. It is defined as the ratio of the initial energy stored in the resonator to the *energy lost* in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a *resonator's center frequency to its bandwidth* when subject to an oscillating driving force. These two definitions give *numerically similar*, but not identical, results.
|
||
|
||
> [!tip]
|
||
> 高Q因子表示振子能量损失的速率较慢,振动可持续较长的时间; 单摆在空气中Q因子较高而在油中较低
|
||
|
||
|
||
|
||
<font size=1>Fig. A damped oscillation. A low Q factor – about 5 here – means the oscillation dies out rapidly.</font>
|
||
|
||
|
||
Q因子较高的振子在共振时,在共振频率附近的**振幅较大**,但会产生的共振的**频率范围比较小**,此频率范围可以称为频宽。
|
||
|
||
例如一台无线电接收器内的调谐电路Q因子较高,要调整接收器对准一特定频率会比较困难,但其选择性较好,在过滤频谱上邻近电台的讯号上也有较佳的效果。
|
||
|
||
系统的Q因子可能会随著应用场合及需求的不同而有大幅的差异。*强调阻尼特性的系统*(例如[防止门突然关闭的阻尼器](warehouse/dampers_keeping_a_door_from_slamming%20shut.md))*其Q因子为1⁄2*,而时钟、雷射或是其他需要强烈共振或是要求频率稳定性的系统其Q因子也较高。音叉的Q因子大约为1000,原子钟、加速器中的超导射频或是光学共振腔的Q因子可以到$10^{11}$
|
||
|
||
> [!help]
|
||
> There are many *alternative quantities* used by physicists and engineers to describe how damped an oscillator is. Important examples include: the [damping ratio](https://en.wikipedia.org/wiki/Damping_ratio "Damping ratio"), [relative bandwidth](https://en.wikipedia.org/wiki/Bandwidth_(signal_processing) "Bandwidth (signal processing)"), [linewidth](https://en.wikipedia.org/wiki/Oscillator_linewidth "Oscillator linewidth") and bandwidth measured in [octaves](https://en.wikipedia.org/wiki/Octave_(electronics) "Octave (electronics)").
|
||
|
||
|
||
# Definition
|
||
|
||

|
||
|
||
<font size=1>Fig. 一阻尼谐振子的频宽, $\Delta f$可以用频率和能量的图来表示。阻尼谐振子(或滤波器)的Q因子为$f_{0}/\Delta f$。Q因子越大,其波峰高度会越高,而其宽度会越窄</font>
|
||
|
||
In the context of resonators, there are two common definitions for Q, which aren't exactly equivalent. They become approximately equivalent *as Q becomes larger*, meaning the resonator becomes less damped.
|
||
|
||
## Bandwidth definition
|
||
|
||
$$Q\stackrel{def}{=}\frac{f_r}{\Delta f}=\frac{\omega_r}{\Delta \omega}$$
|
||
|
||
$f_r$为共振频率,$\Delta f$为频宽,一般是 [full width at half maximum](https://en.wikipedia.org/wiki/Full_width_at_half_maximum "Full width at half maximum") (FWHM)
|
||
|
||
## Stored energy definition
|
||
|
||
Q因子可定义为在一系统的共振频率下,当信号振幅不随时间变化时,**系统储存能量和每个周期外界所提供能量的比例**(此时系统储存能量也不随时间变化)
|
||
|
||
$$Q = 2\pi \times \frac{\text{Energy Stored}}{\text{Energy dissipated per cycle}}=2\pi f_r \times \frac{\text{Energy Stored}}{\text{Power Loss}}$$
|
||
|
||
同时在像电感等储能元件的规格中,会用到和频率有关的Q因子,其定义如下
|
||
|
||
$$Q(\omega) = \omega \times \frac{\text{Maximum Energy Stored}}{\text{Power Loss}}$$
|
||
|
||
其中$\omega$是计算储存能量和功率损失时的角频率
|
||
|
||
|
||
# Reference
|
||
|
||
* [Q factor in wiki](https://en.wikipedia.org/wiki/Q_factor)
|
||
* [品质因子](https://zh.wikipedia.org/zh-hans/%E5%93%81%E8%B3%AA%E5%9B%A0%E5%AD%90#:~:text=%E5%93%81%E8%B4%A8%E5%9B%A0%E5%AD%90%E6%88%96Q%E5%9B%A0%E5%AD%90,%E6%91%86Q%E5%9B%A0%E5%AD%90%E8%BE%83%E4%BD%8E%E3%80%82) |