mirror of
https://github.com/jackyzha0/quartz.git
synced 2025-12-24 13:24:05 -06:00
1.2 KiB
1.2 KiB
#math/calculus
what it is
power series
#card/reverse
it's actually a type of (simpler) taylor series. weird but true
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\ldots
mclaurin
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
3 possibilities for the value of x
x=aRatio test gives\infty(-\infty,\infty), Ratio test= 0- find
R>0(radius of convergence) where|x-a|<Rconverges. Ratio test gives R where-R+a<x<R+a
intervals and derivatives
$f'(x)= c_{1}+2c_{2}(x-a)+3c_{3}(x-a)^2...=\sum\limits_{n=1}^{\infty}nc_n(x-a)^{n-1}=\sum\limits_{n=0}^{\infty}(n+1)c_{n}(x-a)^{n}$
\int f(x)dx=C + c_{o}(x-a)+c_1\frac{(x-a)^2}{2}+c_2\frac{(x-a)^3}{3}...=C+\sum\limits_{n=0}^{\infty}c_n\frac{(x-a)^{n+1}}{n+1}
use to solve integrals
- any part of the integral that might be approximated by a power series can just be swapped out by its power series
- integrate and sum operations can be swapped around
- power series of a function is a geometric series, so its sum can be swapped in.
\sum\limits_{n=0}^{\infty}a_{n}(x-a_{n})^{n}=a\frac{1-r^{n}}{1-r}