mirror of
https://github.com/jackyzha0/quartz.git
synced 2025-12-24 13:24:05 -06:00
811 B
811 B
#math/calculus
Direct Comparison Test
\sum\limits \frac{1}{2^{n+1}} \textasciitilde \sum\limits \frac{1}{2^n}
- if
\sum b_{n}converges\&\ a_{n}<b_{n} \forall n => \sum a_{n}converges - if
\sum b_{n}diverges\&\ a_{n}>b_{n} \forall n \Rightarrow \sum\limits a_{n}diverges
Limit Comparison Test
it's actually just an addition to the principle of an upper bound. It evaluates limits directly.
for all \sum\limits a_{n}, \sum\limits b_{n} positive,
\lim_{n\Rightarrow \infty} \frac{a_{n}}{b_{n}}=c exists
if c>0 & is finite, then a follows b
c=0 \Rightarrow both converge
c=\infty \Rightarrow both diverge
Error for estimated
If the sum itself is hard to compute, bound it with a diverging series above and use that series' error function.
R_{n}\leq T_{n} < \frac{1}{2n^{2}}