quartz/content/vault/taylor.md
2022-06-07 17:04:48 -06:00

1.1 KiB

title
taylor

#math/calculus

formula

#card/reverse $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n}$ n ! \quad= factorial of $\mathrm{n}$ a \quad= real or complex number f^{(n)}(a)= nth derivative of f evaluated at the point a

!Pasted image 20220603201244.png

mclaurin series is the same, except a is 0

When it's a power series

if \sum\limits_{n=0}^{\infty}c_{n}(x-a)^{n}= f(x), so if f(x)=\lim_{x->\infty}T(x) and T(x)=\sum\limits_{i=0}^{n}f^{i}\frac{a}{i!}(x-a)^i, and remainder Rn(x)=f(x)-T(x) its a power series if lim_{x->0}Rn(x)=0

$|R_{n}(x)|\leq \frac{M}{(n+1)!}|x-a|^{n+1}$ if |f^{n+1}(x)|\leq M|x-2|\leq d for example, in the case of a taylor series for e^{x} centered at 2: |e^{x}|\leq e^{d+2}= M thus |Rn(x)|\leq \frac{e^{d+2}}{(n+1)!}d^{n+1} lim both approach zero, so e^{x}= \sum\limits_{n=0}^{\infty} \frac{e^{2}}{n!}(x-2)^n

nice power series

e^n= ::: $\sum\limits \frac{x^{n}}{n!}$ \frac{1}{1-x}= ::: $\sum\limits x^{n}$ sin(x) ::: $\sum\limits \frac{(-1)^{n}x^{2n+1}}{(2n+1)!}$ arctan(x) ::: \sum\limits \frac{(-1)^{n}x^{2n}}{2n!}

binomial series