quartz/content/Math/real_analysis/cauchy_principal_value.md
2024-02-27 19:32:28 +08:00

26 lines
1.0 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Cauchy Principal Value
tags:
- math
- real-analysis
---
# Notation
$$
\text{p.v.} \int_{-\infty}^{\infty} f(x)dx = \lim_{a\rightarrow+\infty} \int_{-a}^{a} f(x) dx = \lim_{a\rightarrow+\infty}[f(a) - f(-a)]
$$
![](Math/real_analysis/attachments/6BC0B163CEFCF127E1D70326AB7D1648%201.png)
![](Math/real_analysis/attachments/78DC2683DB0DF2EFEB6215DAB8C18C25.png)
the Cauchy principal value is the method for assigning values to *certain improper integrals* which would otherwise be undefined. In this method, a singularity on an integral interval is avoided by limiting the integral interval to the non singular domain.
# Reference
* [_Real Analysis 64 | Cauchy Principal Value_. _www.youtube.com_, https://www.youtube.com/watch?v=0SP2b0nFpwI. Accessed 3 Jan. 2024.](https://www.youtube.com/watch?v=0SP2b0nFpwI)
* [“Cauchy Principal Value.” _Wikipedia_, 31 Dec. 2023. _Wikipedia_, https://en.wikipedia.org/w/index.php?title=Cauchy_principal_value&oldid=1192842366.](https://en.wikipedia.org/wiki/Cauchy_principal_value)