Add my Obsidian notes
91
content/BigData/AWS/AWS Cloud Services.md
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
[[Cloud Computing]]
|
||||||
|
## AWS Overview
|
||||||
|
- over 175+ services
|
||||||
|
- **Pay-as-you-go** pricing
|
||||||
|
- **No upfront costs**
|
||||||
|
- **Ideal for experimentation**
|
||||||
|
- **Access to cutting-edge tools and scalability**
|
||||||
|
##### **Region**
|
||||||
|
- A physical location worldwide with multiple data centers.
|
||||||
|
##### **Availability Zone (AZ)**
|
||||||
|
- Logical group of one or more data centers within a region.
|
||||||
|
- Physically isolated (up to 100 km apart).
|
||||||
|
- Designed for **high availability and fault tolerance**.
|
||||||
|
##### **Edge Location**
|
||||||
|
- are physical sites dispersed across the globe
|
||||||
|
- Part of Amazon’s CDN (content delivery network).
|
||||||
|
- Distributes services/data closer to users to reduce latency.
|
||||||
|
##### **Planning for Failure (Resiliency)**
|
||||||
|
- **Storage**:
|
||||||
|
* S3 service is designed for failure.
|
||||||
|
* Each file is copied to every [[AWS Cloud Services#**Availability Zone (AZ)**|AZ]] in the region. Thus you always have three copies of your file.
|
||||||
|
|
||||||
|
- **Compute**:
|
||||||
|
- The owner is responsible to manually distribute resources across multiple [[AWS Cloud Services#**Availability Zone (AZ)**|AZ]]s.
|
||||||
|
- If one fails the others still operate.
|
||||||
|
|
||||||
|
- **Databases**:
|
||||||
|
- The owner can configure DB deployment in multiple [[AWS Cloud Services#**Availability Zone (AZ)**|AZ]]s to keep redundancy.
|
||||||
|
|
||||||
|
##### **Benefits of AWS Global Infrastructure**
|
||||||
|
- High performance
|
||||||
|
- Low latency
|
||||||
|
- High availability
|
||||||
|
- Scalability
|
||||||
|
- Unlimited capacity (horizontally scalable)
|
||||||
|
- Built-in security and monitoring
|
||||||
|
- Confidential
|
||||||
|
- Reliable
|
||||||
|
- Low Cost
|
||||||
|
##### Shared Responsibility of Security
|
||||||
|
![[Screenshot 2025-07-23 at 14.20.31.png]]
|
||||||
|
|
||||||
|
## AWS Core Services
|
||||||
|
##### Networking
|
||||||
|
* [[Amazon VPC]]
|
||||||
|
##### Security & Identity
|
||||||
|
- [[Amazon IAM]]
|
||||||
|
##### Compute
|
||||||
|
- [[Amazon EC2]]
|
||||||
|
- [[Amazon Lambda]]
|
||||||
|
##### Storage
|
||||||
|
- **Instance Store:**
|
||||||
|
- Specified by instance type. Data is stored on the same server as the [[Amazon EC2|EC2]] instance. It is removed when the instance is terminated.
|
||||||
|
- [[Amazon EBS]]
|
||||||
|
- [[Amazon S3]]
|
||||||
|
##### Databases
|
||||||
|
- Relational
|
||||||
|
- [[Amazon RDS]]
|
||||||
|
- Amazon Redshift
|
||||||
|
- Amazon Aurora
|
||||||
|
|
||||||
|
- Non-Relational
|
||||||
|
- [[Amazon DynamoDB]]
|
||||||
|
- Amazon ElastiCache
|
||||||
|
- Amazon Neptune
|
||||||
|
|
||||||
|
- Alternatively:
|
||||||
|
- you can install a DB of your choice in an [[Amazon EC2|EC2]] instance and not use one provided by AWS. In that case, you take all responsibility of the security and management of your DB.
|
||||||
|
|
||||||
|
## AWS Pricing Models
|
||||||
|
##### Principles:
|
||||||
|
- **Pay-as-you-go** (only pay for usage)
|
||||||
|
- **Reserved pricing** (discounted with commitment)
|
||||||
|
- **Volume discount** (pay less when you use more)
|
||||||
|
##### Free Tier Options:
|
||||||
|
- **Always free** (e.g., 1M free Lambda calls)
|
||||||
|
- **12-months free** (introductory offer)
|
||||||
|
- **Trial services**
|
||||||
|
|
||||||
|
### **Billing Examples:**
|
||||||
|
- [[Amazon EC2|EC2]]: Pay for runtime only.
|
||||||
|
|
||||||
|
- [[Amazon S3|S3]]: Pay for
|
||||||
|
- Storage volume
|
||||||
|
- Requests (PUT/GET)
|
||||||
|
- Data transfer
|
||||||
|
|
||||||
|
- [[Amazon Lambda|Lambda]]: Pay for
|
||||||
|
- Number of requests
|
||||||
|
- Execution time
|
||||||
|
|
||||||
10
content/BigData/AWS/Amazon EBS.md
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- EBS
|
||||||
|
---
|
||||||
|
> Part of [[AWS Cloud Services#AWS Core Services|AWS Core Services]]
|
||||||
|
##### **Amazon EBS (Elastic Block Store)**
|
||||||
|
extra storage that is connected to the [[Amazon EC2|EC2]] instance but is not the same as the instance storage.
|
||||||
|
- Persistent and can be attached to any [[Amazon EC2|EC2]] instance in the [[AWS Cloud Services#**Availability Zone (AZ)**|AZ]].
|
||||||
|
- It is not deleted when the [[Amazon EC2|EC2]] instance is terminated.
|
||||||
|
|
||||||
43
content/BigData/AWS/Amazon EC2.md
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- EC2
|
||||||
|
---
|
||||||
|
> Part of [[AWS Cloud Services#AWS Core Services|AWS Core Services]]
|
||||||
|
##### **Amazon EC2 (Elastic Compute Cloud)**
|
||||||
|
A web service that provides secure, resizable compute capacity in
|
||||||
|
the cloud.
|
||||||
|
* Designed to make web-scale cloud computing easier for developers.
|
||||||
|
- Secure, resizable compute capacity (virtual servers).
|
||||||
|
- Complete control over OS and apps.
|
||||||
|
|
||||||
|
**Pricing Models**:
|
||||||
|
- **On-Demand**: Pay for what you use.
|
||||||
|
- **Spot Instances**: Cheap, temporary, short-life instance, save up to 90%.
|
||||||
|
- **Reserved**: Lower price for long-term usage.
|
||||||
|
|
||||||
|
**Features:**
|
||||||
|
- **Amazon Machin Image (AMI):**
|
||||||
|
- Preconfigured OS image
|
||||||
|
- e.g., Linux, maxOS, Windows
|
||||||
|
- **Instance type**:
|
||||||
|
- Defines CPU, memory, storage, networking capacity
|
||||||
|
- **Networking**:
|
||||||
|
- [[Amazon VPC|VPC]] and subnets
|
||||||
|
- **Storage**
|
||||||
|
- **Security Group(s)**:
|
||||||
|
- Like a firewall, Define access to and from EC2 instance
|
||||||
|
- **Key pair**:
|
||||||
|
- establish a remote connection (Secure SSH access)
|
||||||
|
|
||||||
|
- **Instance Type**:
|
||||||
|
- defines CPU, memory, storage, and network performance.
|
||||||
|
![[Screenshot 2025-07-23 at 16.52.08.png]]
|
||||||
|
- **Instance Families**
|
||||||
|
|
||||||
|
| Family Type | Use Case<br> |
|
||||||
|
| --------------------------------- | ------------------------- |
|
||||||
|
| General Purpose (M / T / A) | Web servers |
|
||||||
|
| Compute Optimized (C) | Analytics, gaming |
|
||||||
|
| Memory Optimized (R / X) | High-performance DB |
|
||||||
|
| Accelerated Computing (P / G / F) | AI, ML, GPU compute |
|
||||||
|
| Storage Optimized (I) | Big data, NoSQL databases |
|
||||||
13
content/BigData/AWS/Amazon IAM.md
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- IAM
|
||||||
|
---
|
||||||
|
> Part of [[AWS Cloud Services#AWS Core Services|AWS Core Services]]
|
||||||
|
##### **Amazon IAM (Identity and Access Management)**
|
||||||
|
- Manages user access to services.
|
||||||
|
- Attach permission policies to identities to manage the kind of actions the identity can perform.
|
||||||
|
- Identities in Amazon IAM are ***users***, ***groups*** and ***roles***.
|
||||||
|
- Based on ***least privilege*** principle.
|
||||||
|
* user or entity should only have access to the specific data, resources and applications when you explicitly granted them access.
|
||||||
|
* example usage:
|
||||||
|
* Grant cross-account permissions to upload objects while ensuring that the bucket owner has full control.
|
||||||
18
content/BigData/AWS/Amazon Lambda.md
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- Lambda
|
||||||
|
---
|
||||||
|
> Part of [[AWS Cloud Services#AWS Core Services|AWS Core Services]]
|
||||||
|
##### **AWS Lambda (a serverless compute service)**
|
||||||
|
- Run backend code without provisioning servers.
|
||||||
|
- Event-driven: triggered by events (e.g., file upload).
|
||||||
|
- Languages: Python, Node.js, Java, C#, Go, Ruby.
|
||||||
|
- Automatically scales with demand.
|
||||||
|
|
||||||
|
**Work flow**
|
||||||
|
![[Screenshot 2025-07-23 at 17.51.04.png|600]]
|
||||||
|
|
||||||
|
**Example Use Case:**
|
||||||
|
- You can configure Lambda function to perform an action when an event occurs. For example, when an image is stored in Bucket-A, an event invokes the Lambda function to process the image to a new format and store it in Bucket-B
|
||||||
|
![[Screenshot 2025-07-23 at 17.52.39.png|400]]
|
||||||
|
|
||||||
14
content/BigData/AWS/Amazon RDS.md
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- RDS
|
||||||
|
- AWS RDS
|
||||||
|
---
|
||||||
|
|
||||||
|
> Part of [[AWS Cloud Services#AWS Core Services|AWS Core Services]]
|
||||||
|
##### **Amazon RDS (Relational Database Service)**
|
||||||
|
A cloud based distributed relational database managed service.
|
||||||
|
- Managed relational DBs (e.g., MySQL, PostgreSQL, Oracle).
|
||||||
|
- AWS handles backups, patching, and scaling.
|
||||||
|
- You can build fault-tolerant DB by configuring RDS for **Multi-[[AWS Cloud Services#**Availability Zone (AZ)**|AZ]]** deployment.
|
||||||
|
Placing your master RDS instance in one [[AWS Cloud Services#**Availability Zone (AZ)**|AZ]] and a standby replica in another [[AWS Cloud Services#**Availability Zone (AZ)**|AZ]].
|
||||||
|
![[Screenshot 2025-07-23 at 17.48.07.png|600]]
|
||||||
20
content/BigData/AWS/Amazon S3.md
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- S3
|
||||||
|
---
|
||||||
|
|
||||||
|
> Part of [[AWS Cloud Services#AWS Core Services|AWS Core Services]]
|
||||||
|
##### Amazon S3 (Simple Storage Service)
|
||||||
|
An object storage service that offers industry-leading scalability, data availability, security, and performance.
|
||||||
|
- Object-based storage.
|
||||||
|
- Designed for 99.999999999% (11 9’s) of durability.
|
||||||
|
- Ideal for:
|
||||||
|
- Media storage
|
||||||
|
- Backups / archives
|
||||||
|
- Data lakes
|
||||||
|
- ML and analytics
|
||||||
|
|
||||||
|
**Components:**
|
||||||
|
- **Bucket**: A container to store an unlimited number of objects
|
||||||
|
- **Object**: The actual entities stored in the buckets
|
||||||
|
- **Key**: Unique identifier for the object
|
||||||
12
content/BigData/AWS/Amazon VPC.md
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- VPC
|
||||||
|
---
|
||||||
|
|
||||||
|
> Part of [[AWS Cloud Services#AWS Core Services|AWS Core Services]]
|
||||||
|
##### **Amazon VPC (Virtual Private Cloud)**
|
||||||
|
An logically **isolated network** within AWS for your resources.
|
||||||
|
- Create a ***public-facing*** subnet for your web servers which have access to the internet.
|
||||||
|
- Create a ***private-facing*** subnet with no internet access for your backend system
|
||||||
|
- e.g., databases, application servers
|
||||||
|
- Enables fine-grained control over traffic with both a public and a private subnet.
|
||||||
41
content/BigData/Big Data Intro.md
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
##### data vs. information
|
||||||
|
- **Data** is just raw facts (like the number 42).
|
||||||
|
- But 42 could mean: age, shoe size, stock amount, etc.
|
||||||
|
|
||||||
|
- **Information** is when you give meaning to the data.
|
||||||
|
- Example: “Age = 42” gives context and becomes useful.
|
||||||
|
|
||||||
|
##### Big Data implementations
|
||||||
|
- **Delta** – *Sentiment analysis* (e.g., of customer feedback).
|
||||||
|
- **Netflix** – *User Behavioral Analysis* (e.g., what you watch and when).
|
||||||
|
- **Time Warner** – *Customer segmentation* (dividing customers into groups).
|
||||||
|
- **Volkswagen** – *Predictive support* (e.g., predict car issues).
|
||||||
|
- **Visa** – *Fraud detection*.
|
||||||
|
- **China government** – *Security Intelligence* (National security).
|
||||||
|
- **Weather forecasting** – *Weather prediction models* to predicting the weather.
|
||||||
|
- **Hospitals** – Diagnosing diseases using *machine learning* on images.
|
||||||
|
- **Amazon** – *Price optimization*.
|
||||||
|
- **Facebook** – Targeted advertising using *user profiling*.
|
||||||
|
##### Design Principles for Big Data
|
||||||
|
1. **Horizontal Growth** – Add more machines instead of stronger ones.
|
||||||
|
2. **Distributed Processing** – Split work across machines.
|
||||||
|
3. **Process where Data is** – Don’t move data, move the code.
|
||||||
|
4. **Simplicity of Code** – Keep logic understandable.
|
||||||
|
5. **Recover from Failures** – Systems should self-heal.
|
||||||
|
6. **Idempotency** – Running the same job twice shouldn’t break results.
|
||||||
|
|
||||||
|
##### Big Data SLA (Service Level Agreement)
|
||||||
|
define performance expectations
|
||||||
|
|
||||||
|
- **Reliability** – Will the data be there?
|
||||||
|
- **Consistency** – Is the data accurate across systems?
|
||||||
|
- **Availability** – Is the system always accessible?
|
||||||
|
- **Freshness** – How up-to-date is the data?
|
||||||
|
- **Response time** – How fast do queries return?
|
||||||
|
|
||||||
|
* Other concerns:
|
||||||
|
- **Cost**
|
||||||
|
- **Scalability**
|
||||||
|
- **Performance**
|
||||||
|
|
||||||
|
> Next [[Cloud Services]]
|
||||||
15
content/BigData/Big Data.md
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
>“An accumulation of data
|
||||||
|
>that is too large and complex
|
||||||
|
>for processing by traditional
|
||||||
|
>database management tools”
|
||||||
|
>
|
||||||
|
>**In Short:**
|
||||||
|
>Big Data = too big for standard tools like Excel or regular SQL databases.
|
||||||
|
|
||||||
|
[[Big Data Intro]]
|
||||||
|
[[Cloud Services]]
|
||||||
|
[[AWS Cloud Services]]
|
||||||
|
[[Database Overview]]
|
||||||
|
[[RDBMS]]
|
||||||
|
[[Hadoop]]
|
||||||
|
[[Hadoop Eccosystem]]
|
||||||
29
content/BigData/Cloud Computing.md
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
##### Benefits of Cloud Computing
|
||||||
|
- **Elasticity**: Start small and scale as needed.
|
||||||
|
- **Cost-efficiency**: No need to spend money on data centers.
|
||||||
|
- **No capacity guessing**: Scale automatically based on demand.
|
||||||
|
- **Economies of scale**: Benefit from AWS’s vast infrastructure.
|
||||||
|
- **Agility**: Deploy resources quickly.
|
||||||
|
- **Global Reach**: Go international within minutes.
|
||||||
|
##### Deployment Models in the Cloud
|
||||||
|
- **IaaS** (Infrastructure as a Service):
|
||||||
|
- Virtual machines, storage, networks
|
||||||
|
- e.g., Amazon EC2.
|
||||||
|
|
||||||
|
- **PaaS** (Platform as a Service):
|
||||||
|
- Managed environments for building apps
|
||||||
|
- e.g., AWS Elastic Beanstalk.
|
||||||
|
|
||||||
|
- **[[Cloud Services#Selling Your Service |SaaS]]** (Software as a Service):
|
||||||
|
- Full applications delivered over the internet
|
||||||
|
- e.g., Gmail.
|
||||||
|
|
||||||
|
##### Deployment Strategies of Cloud Computing
|
||||||
|
- **On-Premises (Private Cloud)**: Owned and operated on-site.
|
||||||
|
- **Public Cloud**: Fully hosted on cloud provider infrastructure.
|
||||||
|
- **Hybrid Cloud**: Combines on-premises and cloud resources.
|
||||||
|
|
||||||
|
##### Cloud Providers Comparison
|
||||||
|
![[Screenshot 2025-07-23 at 13.54.07.png | 600]]
|
||||||
|
|
||||||
|
> Next [[AWS Cloud Services]]
|
||||||
58
content/BigData/Cloud Services.md
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
Introduction to cloud computing concepts relevant for Big Data.
|
||||||
|
##### traditional software deployment process:
|
||||||
|
1. **Coding**
|
||||||
|
2. **Compiling** – turning source code into executable files.
|
||||||
|
3. **Installing** – putting the software on computers.
|
||||||
|
|
||||||
|
##### Clustered Software
|
||||||
|
Introduces three related architectures:
|
||||||
|
|
||||||
|
1. **Redundant Servers** – multiple servers running the same service for fault-tolerance.
|
||||||
|
- E.g., several identical web servers.
|
||||||
|
|
||||||
|
2. **Micro-services** – the system is broken into **small, independent services** that communicate with each other.
|
||||||
|
- Each handles a specific function.
|
||||||
|
|
||||||
|
3. **Clustered Computing** – a large task is **split into sub-tasks** running on **multiple nodes**.
|
||||||
|
- Used in Big Data systems like **NoSQL databases**.
|
||||||
|
|
||||||
|
##### Scaling a Software System
|
||||||
|
Two ways to handle growing demand:
|
||||||
|
- **Scale Up**: Make one machine stronger
|
||||||
|
- When running out of resources we can add: *Memory*, *CPU*, *Disk*, *Network Bandwidth*
|
||||||
|
- Can become expensive or reach hardware limits.
|
||||||
|
|
||||||
|
- **Scale Out**: Add more machines to share the work.
|
||||||
|
- Add **redundant servers** or use **cluster computing**.
|
||||||
|
- Each server can be **standalone** (like a web server), or part of a **coordinated system** (like a NoSQL cluster).
|
||||||
|
- More fault-tolerant and scalable than vertical scaling.
|
||||||
|
|
||||||
|
- Tradeoff:
|
||||||
|
- **Scale-up** is simpler but has limits.
|
||||||
|
- **Scale-out** is more flexible and resilient but more complex.
|
||||||
|
|
||||||
|
##### Selling Your Service
|
||||||
|
- **Install** - Software as installation
|
||||||
|
- e.g., Microsoft's office package
|
||||||
|
|
||||||
|
- Saas - Software as a Service
|
||||||
|
- No need to install, just log in and use.
|
||||||
|
- e.g., Google Docs, Zoom, Dropbox.\
|
||||||
|
|
||||||
|
- Common SaaS pricing models:
|
||||||
|
1. **Per-user** – Pay per person.
|
||||||
|
2. **Tiered** – Fixed price for different feature levels.
|
||||||
|
3. **Usage-based** – Pay for what you use (e.g., storage, API calls).
|
||||||
|
|
||||||
|
##### Deployment Models
|
||||||
|
Where you run your software:
|
||||||
|
- **On-Premises**: Your own machines or rented servers (or VM’s).
|
||||||
|
- **Cloud**: Run on virtual machines (VMs) from a cloud provider (e.g., AWS, Azure, GCP).
|
||||||
|
|
||||||
|
##### Cloud Deployment Options
|
||||||
|
When deploying to the cloud, you have options:
|
||||||
|
1. **Vanilla Node**: Raw VM – you install everything.
|
||||||
|
2. **Cloud VM**: VM with pre-installed software.
|
||||||
|
3. **Managed Service**: Cloud provider handles setup, scaling, updates (e.g., [[Amazon RDS|AWS RDS]], Google BigQuery).
|
||||||
|
|
||||||
|
> Next [[Cloud Computing]]
|
||||||
24
content/BigData/Database History.md
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
|
||||||
|
1. **Punch cards** – physical cards with holes. Early computers read data this way.![[Screenshot 2025-07-23 at 12.08.22.png | 400]]
|
||||||
|
|
||||||
|
2. **Magnetic media**:
|
||||||
|
- First: **Floppy disks**
|
||||||
|
![[Screenshot 2025-07-23 at 12.08.48.png | 400]]
|
||||||
|
- Then: **Hard disks** (faster, more storage)
|
||||||
|
![[Screenshot 2025-07-23 at 12.09.30.png]]
|
||||||
|
3. **1960s**: First **Database Management Systems (DBMSs)** created:
|
||||||
|
- Charles W. Bachman developed the **Integrated Database System**
|
||||||
|
- IBM developed **IMS**
|
||||||
|
4. **1970s**:
|
||||||
|
- IBM created **SQL** (Structured Query Language)
|
||||||
|
- Modern relational databases (RDBMS) were born
|
||||||
|
5. **20th century:** Many RDBMS's
|
||||||
|
- ORACLE, Microsoft's SQLServer, IBM's DB2, MySQL, SYBASE...
|
||||||
|
![[Screenshot 2025-07-23 at 12.10.02.png]]
|
||||||
|
|
||||||
|
|
||||||
|
##### Hadoop history
|
||||||
|
![[Screenshot 2025-07-23 at 12.16.32.png | 200]]
|
||||||
|
2005 - Started by ***Doug Cutting*** at Yahoo!
|
||||||
|
[[Hadoop]] is an [[Open Source]] Apache project
|
||||||
|
Benefits: free, flexible, community-supported.
|
||||||
22
content/BigData/Database Overview.md
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
|
||||||
|
[[Database History]]
|
||||||
|
[[RDBMS]] - Relational Models
|
||||||
|
[[Hadoop]]
|
||||||
|
##### **Big Data Challenges**
|
||||||
|
Examples of tasks that are hard with large datasets:
|
||||||
|
1. Count the **most frequent words** in Wikipedia.
|
||||||
|
2. Find the **hottest November** per country from weather data.
|
||||||
|
3. Find the **day with most critical errors** in company logs.
|
||||||
|
|
||||||
|
These problems require:
|
||||||
|
- **Huge data**
|
||||||
|
- **Efficient distributed computing**
|
||||||
|
|
||||||
|
#### [[RDBMS]] vs. [[Hadoop]]
|
||||||
|
|
||||||
|
| **Feature** | **RDBMS** | **Hadoop** |
|
||||||
|
| -------------- | ------------------- | ----------------------------- |
|
||||||
|
| Data structure | Structured (tables) | Any (structured/unstructured) |
|
||||||
|
| Scalability | Limited | Highly scalable |
|
||||||
|
| Speed | Fast (small data) | Designed for huge data |
|
||||||
|
| Access | SQL | Code (e.g., Java, Python) |
|
||||||
59
content/BigData/Hadoop/Apache Hive.md
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- Hive
|
||||||
|
---
|
||||||
|
> [[Hadoop Eccosystem|Systems based on MapReduce]]
|
||||||
|
|
||||||
|
### Apache Hive
|
||||||
|
##### **Key Features**
|
||||||
|
- Developed by **Apache**.
|
||||||
|
- General SQL-like syntax for querying [[HDFS]] or other large databases
|
||||||
|
- Translates SQL queries into one or more [[MapReduce]] jobs.
|
||||||
|
- Maps data in [[HDFS]] into virtual [[RDBMS]]-like tables.
|
||||||
|
- **Pro**:
|
||||||
|
- Convenient for **data analytics** uses SQL.
|
||||||
|
* **Con**:
|
||||||
|
* Quite slow in response time
|
||||||
|
|
||||||
|
##### **Hive Data Model**
|
||||||
|
**Structure**
|
||||||
|
- **Physical**: Data stored in [[HDFS]] blocks across nodes.
|
||||||
|
- **Virtual Table**: Defined with schema using metadata.
|
||||||
|
- **Partitions**: Logical splits of data to speed up queries.
|
||||||
|
|
||||||
|
**Metadata**
|
||||||
|
- Hive stores metadatain DB
|
||||||
|
- Map physical files to tables.
|
||||||
|
- Map fields (columns) to line structures in raw data.
|
||||||
|
|
||||||
|
![[Screenshot 2025-07-23 at 18.25.32.png]]
|
||||||
|
|
||||||
|
**Hive Architecture**
|
||||||
|
![[Screenshot 2025-07-23 at 18.27.30.png|]]
|
||||||
|
|
||||||
|
##### Hive Usage
|
||||||
|
```
|
||||||
|
#Start a hive shell:
|
||||||
|
$hive
|
||||||
|
|
||||||
|
#create hive table:
|
||||||
|
hive> CREATE TABLE mta (id BIGINT, name STRING, startdate TIMESTAMP, email STRING)
|
||||||
|
|
||||||
|
#Show all tables:
|
||||||
|
hive> SHOW TABLES;
|
||||||
|
|
||||||
|
#Add a new column to the table:
|
||||||
|
hive> ALTER TABLE mta ADD COLUMNS (description STRING);
|
||||||
|
|
||||||
|
#Load HDFS data file into the table:
|
||||||
|
hive> LOAD DATA INPATH '/home/hadoop/mta_users' OVERWRITE INTO TABLE mta;
|
||||||
|
|
||||||
|
#Query employees that work more than a year:
|
||||||
|
hive> SELECT name FROM mta WHERE (unix_timestamp() - startdate > 365 * 24 * 60 * 60);
|
||||||
|
|
||||||
|
#Execute command without shell
|
||||||
|
$hive -e 'SELECT name FROM mta;'
|
||||||
|
|
||||||
|
#Execute script from file
|
||||||
|
$hive -f hive_script.txt
|
||||||
|
```
|
||||||
68
content/BigData/Hadoop/Apache Spark.md
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
---
|
||||||
|
aliases:
|
||||||
|
- Spark
|
||||||
|
---
|
||||||
|
> [[Hadoop Eccosystem|Systems based on MapReduce]]
|
||||||
|
|
||||||
|
## Apache Spark
|
||||||
|
> Apache Spark is a **fast**, **general-purpose**, **open-source** cluster computing system designed for large-scale data processing.
|
||||||
|
|
||||||
|
##### Key Characteristics:
|
||||||
|
- **Unified analytics engine** – supports batch, streaming, SQL, machine learning, and graph processing.
|
||||||
|
- **In-memory computation** – stores intermediate results in RAM (vs. Hadoop which writes to disk).
|
||||||
|
- **Fault tolerant** and scalable.
|
||||||
|
|
||||||
|
##### Benefits of Spark Over [[Hadoop]] [[MapReduce]]
|
||||||
|
|
||||||
|
| **Feature** | **Spark** | **Hadoop MapReduce** |
|
||||||
|
| ------------------- | ------------------------------------------------------------------------- | -------------------------------------- |
|
||||||
|
| **Performance** | Up to **100x faster** (in-memory operations) | Disk-based, slower |
|
||||||
|
| **Ease of use** | High-level APIs in Python, Java, Scala, R | Java-based, verbose programming |
|
||||||
|
| **Generality** | Unified engine for batch, stream, ML, graph | Focused on batch processing |
|
||||||
|
| **Fault tolerance** | Efficient recovery via lineage | Slower fault recovery via re-execution |
|
||||||
|
| **Runs Everywhere** | Runs on [[Hadoop]], Apache Mesos, Kubernetes, Standalone or in the cloud. | |
|
||||||
|
|
||||||
|
##### How is Spark Fault Tolerant?
|
||||||
|
> Resilient Distributed Datasets ([[RDD]]s)
|
||||||
|
|
||||||
|
- Restricted form of distributed shared memory
|
||||||
|
- Immutable, partitioned collections of records
|
||||||
|
- Recompute lost partitions on failure
|
||||||
|
- No cost if nothing fails
|
||||||
|
|
||||||
|
![[Screenshot 2025-07-23 at 19.17.31.png|500]]
|
||||||
|
|
||||||
|
- **Lineage Graph**
|
||||||
|
- Each [[RDD]] keeps track of how it was derived. If a node fails, Spark **recomputes only the lost partition** from the original transformations.
|
||||||
|
|
||||||
|
##### Writing Spark Code in Python
|
||||||
|
```
|
||||||
|
# Spark Context Initialization
|
||||||
|
from pyspark import SparkConf, SparkContext
|
||||||
|
|
||||||
|
conf = SparkConf().setAppName("MyApp").setMaster("local")
|
||||||
|
sc = SparkContext(conf=conf)
|
||||||
|
|
||||||
|
# Create RDDs:
|
||||||
|
# 1. From a Python list
|
||||||
|
data = [1, 2, 3, 4, 5]
|
||||||
|
distData = sc.parallelize(data)
|
||||||
|
|
||||||
|
# 2. From a file
|
||||||
|
distFile = sc.textFile("data.txt")
|
||||||
|
distFile = sc.textFile("folder/*.txt")
|
||||||
|
```
|
||||||
|
##### **RDD Transformations (Lazy)**
|
||||||
|
These create a new RDD from an existing one.
|
||||||
|
|
||||||
|
| map(func) | Apply function to each element |
|
||||||
|
| ----------------- | -------------------------------------------- |
|
||||||
|
| filter(func) | Keep elements where func returns True |
|
||||||
|
| flatMap(func) | Like map, but flattens results |
|
||||||
|
| union(otherRDD) | Union of two RDDs |
|
||||||
|
| distinct() | Remove duplicates |
|
||||||
|
| reduceByKey(func) | Combine values for each key (key-value RDDs) |
|
||||||
|
| sortByKey() | Sort by keys |
|
||||||
|
| join(otherRDD) | Join two key-value RDDs |
|
||||||
|
| repartition(n) | Re-distribute RDD to n partitions |
|
||||||
|
Transformations are **lazy** – they only execute when an action is triggered.
|
||||||
27
content/BigData/Hadoop/Google Dremel.md
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
> [[Hadoop Eccosystem|Systems based on MapReduce]]
|
||||||
|
|
||||||
|
**Key Ideas**
|
||||||
|
• Leverages columnar file format
|
||||||
|
• Optimized for SQL performance
|
||||||
|
|
||||||
|
**Concepts**
|
||||||
|
- Tree-based **query execution**.
|
||||||
|
- Efficient scanning and aggregation of **nested columnar data**.
|
||||||
|
### Columnare data format
|
||||||
|
> Illustration of what columnar storage is all about:
|
||||||
|
> given a 3 columns:
|
||||||
|
![[Screenshot 2025-07-23 at 18.42.46.png|170]]
|
||||||
|
> In a row-oriented storage, the data is laid out one row at a time as follows:
|
||||||
|
![[Screenshot 2025-07-23 at 18.45.25.png|500]]
|
||||||
|
> Whereas in a column-oriented storage, it is laid out one column at a time:
|
||||||
|
![[Screenshot 2025-07-23 at 18.46.55.png|500]]
|
||||||
|
|
||||||
|
**Nested data in columnar format**
|
||||||
|
![[Screenshot 2025-07-23 at 18.50.10.png]]![[Screenshot 2025-07-23 at 18.50.16.png]]
|
||||||
|
|
||||||
|
### Frameworks inspired by Google Dremel
|
||||||
|
• Apache Dril (MapR)
|
||||||
|
• Apache Impala (Cloudera)
|
||||||
|
• Apache Tez (Hortonworks)
|
||||||
|
• Presto (Facebook)
|
||||||
|
|
||||||
64
content/BigData/Hadoop/HDFS.md
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
##### HDFS ([[Hadoop]] Distributed File System)
|
||||||
|
Stores huge files (Typical file size GB-TB) across multiple machines.
|
||||||
|
- Breaks files into **blocks** (typically 128 MB).
|
||||||
|
- **Replicates** blocks (default 3 copies) for fault tolerance.
|
||||||
|
- Access using POSIX API.
|
||||||
|
|
||||||
|
##### HDFS design principles
|
||||||
|
* **Immutable**: **write-once, read-many**
|
||||||
|
* **No Failures**: Disk or node failure does not affect file system
|
||||||
|
* **File Size Unlimited**: Up to 512 yottabytes (2^63 X 64MB)
|
||||||
|
* **File Num Limited**: 1048576 files in a directory
|
||||||
|
* **Prefer bigger files**: Big files provide better performance
|
||||||
|
|
||||||
|
##### HDFS File Formats
|
||||||
|
- Text/CSV - No schema, no metadata
|
||||||
|
- Json Records - metadata is stored with data
|
||||||
|
- Avro Files - schema independent of data
|
||||||
|
- Sequence Files - binary files (used as intermediate storage in M/R)
|
||||||
|
- RC Files - Record Columnar files
|
||||||
|
- ORC Files - Optimized RC files. Compress better
|
||||||
|
- Parquet Files - Yet another RC file
|
||||||
|
|
||||||
|
##### HDFS Command Line
|
||||||
|
```
|
||||||
|
# List files
|
||||||
|
hadoop fs -ls /path
|
||||||
|
|
||||||
|
# Make directory
|
||||||
|
hadoop fs -mkdir /user/hadoop
|
||||||
|
|
||||||
|
# Print file
|
||||||
|
hadoop fs -cat /file
|
||||||
|
|
||||||
|
# Upload file
|
||||||
|
hadoop fs -copyFromLocal file.txt hdfs://...
|
||||||
|
```
|
||||||
|
|
||||||
|
#### HDFS Architecture – Main Components
|
||||||
|
##### **1.** NameNode (Master Node)
|
||||||
|
- **Stores metadata** about the filesystem:
|
||||||
|
- Filenames
|
||||||
|
- Directory structure
|
||||||
|
- Block locations
|
||||||
|
- Permissions
|
||||||
|
|
||||||
|
- It **does not store the actual data**.
|
||||||
|
- There is **one active NameNode** per cluster.
|
||||||
|
|
||||||
|
##### **2.** DataNodes (Worker Nodes)
|
||||||
|
- Store the **actual data blocks** of files.
|
||||||
|
- Send **heartbeat** messages to the NameNode to report that they are alive.
|
||||||
|
- When a file is written, it’s split into blocks and distributed across many DataNodes.
|
||||||
|
- DataNodes also **replicate** blocks (typically 3 copies) to provide **fault tolerance**.
|
||||||
|
|
||||||
|
#### File Read / Write
|
||||||
|
**When a file is written:**
|
||||||
|
1. The client contacts the **NameNode** to ask: “Where should I write the blocks?”
|
||||||
|
2. The NameNode responds with a list of **DataNodes** to use.
|
||||||
|
3. The client sends the blocks of the file to those DataNodes.
|
||||||
|
4. Blocks are **replicated** automatically across different nodes for redundancy.
|
||||||
|
|
||||||
|
**When a file is read:**
|
||||||
|
1. The client contacts the **NameNode** to get the list of DataNodes storing the required blocks.
|
||||||
|
2. The client reads the blocks **directly** from the DataNodes.
|
||||||
17
content/BigData/Hadoop/Hadoop Eccosystem.md
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
### Systems based on [[MapReduce]]
|
||||||
|
> Early generation frameworks for big data processing.
|
||||||
|
* [[Apache Hive]]
|
||||||
|
|
||||||
|
### Systems that replace MapReduce
|
||||||
|
> newer, faster frameworks with different architectures and performance improvements.
|
||||||
|
|
||||||
|
**Motivation**: [[MapReduce]] and [[Apache Hive|Hive]] are too slow!
|
||||||
|
- [[Google Dremel]]
|
||||||
|
- [[Apache Spark]]
|
||||||
|
- Replaces MapReduce with its own engine that works much faster without compromising consistency
|
||||||
|
- Architecture not based on Map-reduce but rather on two concepts:
|
||||||
|
- RDD (Resilient Distributed Dataset)
|
||||||
|
- DAG (Directed Acyclic Graph)
|
||||||
|
- Pro’s:
|
||||||
|
- Works much faster than MapReduce;
|
||||||
|
- fast growing community.
|
||||||
13
content/BigData/Hadoop/Hadoop.md
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
![[Screenshot 2025-07-23 at 12.20.09.png | 400]]
|
||||||
|
> Hadoop is an **[[Open Source]] framework** for:
|
||||||
|
> - **Distributed storage** (across many machines)
|
||||||
|
> - **Distributed processing** (run programs on many machines in parallel)
|
||||||
|
>
|
||||||
|
> > It is **not a database** — it is an ecosystem for managing and analyzing **Big Data**.
|
||||||
|
## **Hadoop Components Overview**
|
||||||
|
![[Screenshot 2025-07-23 at 11.58.48.png ]]
|
||||||
|
> 1. [[HDFS]]
|
||||||
|
> 2. [[MapReduce]]
|
||||||
|
> 3. [[Yarn]]
|
||||||
|
|
||||||
|
[[Hadoop Eccosystem]]
|
||||||
32
content/BigData/Hadoop/MapReduce.md
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
A programming model for processing big data in parallel.
|
||||||
|
- Distributed processing - Job is run in parallel on several nodes
|
||||||
|
- Run the process where the data is!
|
||||||
|
- Horizontal Scalability
|
||||||
|
|
||||||
|
- **Map** step: transform input
|
||||||
|
- Transform, Filter, Calculate
|
||||||
|
- Local data
|
||||||
|
- e.g., count 1 per word
|
||||||
|
|
||||||
|
- **Combine** step: Reorganization of map output.
|
||||||
|
- Shuffle, Sort, Group
|
||||||
|
|
||||||
|
- **Reduce** step: Aggregate / Sum the groups
|
||||||
|
- e.g., sum word counts
|
||||||
|
|
||||||
|
MapReduce **runs code where the data is**, saving data transfer time.
|
||||||
|
|
||||||
|
![[Screenshot 2025-07-23 at 13.00.20.png]]
|
||||||
|
##### Example:
|
||||||
|
From the sentence:
|
||||||
|
> “how many cookies could a good cook cook if a good cook could cook cookies”
|
||||||
|
|
||||||
|
Steps:
|
||||||
|
1. **Map**:
|
||||||
|
- Each word becomes a pair like ("cook", 1)
|
||||||
|
2. **Shuffle**:
|
||||||
|
- Group by word
|
||||||
|
3. **Reduce**:
|
||||||
|
- Add up counts → ("cook", 4)
|
||||||
|
|
||||||
|
![[Screenshot 2025-07-23 at 13.01.20.png]]
|
||||||
20
content/BigData/Hadoop/RDD.md
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
## RDD (Resilient Distributed Dataset)
|
||||||
|
>RDD is an immutable (read only) distributed collection of objects.
|
||||||
|
>
|
||||||
|
>Dataset in RDD is divided into logical partitions, which may be computed on different nodes of the cluster
|
||||||
|
|
||||||
|
![[Screenshot 2025-07-23 at 19.08.40.png|600]]
|
||||||
|
##### **Key Properties:**
|
||||||
|
- Distributed: Automatically split across cluster nodes.
|
||||||
|
- Lazy Evaluation: Transformations aren’t executed until an action is called.
|
||||||
|
- Fault-tolerant: Can **recompute lost partitions** using lineage graph.
|
||||||
|
- Parallel: Operates concurrently across cluster cores.
|
||||||
|
##### Data Sharing
|
||||||
|
> In [[Hadoop]] [[MapReduce]]
|
||||||
|
![[Screenshot 2025-07-23 at 19.11.44.png|500]]
|
||||||
|
|
||||||
|
> In [[Apache Spark|Spark]]
|
||||||
|
![[Screenshot 2025-07-23 at 19.12.57.png|500]]
|
||||||
|
>10-100x faster than network and disk!
|
||||||
|
|
||||||
|
|
||||||
35
content/BigData/Hadoop/Yarn.md
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
**YARN (Yet Another Resource Negotiator)**
|
||||||
|
is [[Hadoop]]’s cluster resource management system
|
||||||
|
- Multiple jobs running simultaneously
|
||||||
|
- Multiple jobs use same resources (disk, CPU, memory)
|
||||||
|
- Assign resources to jobs and tasks exclusively
|
||||||
|
|
||||||
|
##### YARN is in charge of:
|
||||||
|
1. Allocates Resources
|
||||||
|
2. Schedules Jobs
|
||||||
|
- allocate priorities to jobs by policies:
|
||||||
|
FIFO scheduler, Fair scheduler, Capacity scheduler
|
||||||
|
|
||||||
|
##### Components:
|
||||||
|
- **ResourceManager**
|
||||||
|
- oversees resource allocation across the cluster
|
||||||
|
|
||||||
|
- **NodeManager**
|
||||||
|
- Each node in the cluster runs a NodeManager.
|
||||||
|
- This component manages the execution of containers on its node.
|
||||||
|
|
||||||
|
- **ApplicationMaster**
|
||||||
|
- manages the lifecycle of applications.
|
||||||
|
- handles job scheduling and monitors progress.
|
||||||
|
|
||||||
|
- **Resource Container**
|
||||||
|
- a logical bundle of resources (e.g., CPU, Memory) that is allocated by the ResourceManager
|
||||||
|
|
||||||
|
![[Screenshot 2025-07-23 at 13.29.37.png]]
|
||||||
|
|
||||||
|
##### YARN ecosystem
|
||||||
|
Yarn can run other applications beside Hadoop [[MapReduce]], that can
|
||||||
|
integrate to the Hadoop ecosystem:
|
||||||
|
• Apache Storm (Data Streaming engine)
|
||||||
|
• [[Apache Spark]] (Data Batch and streaming engine)
|
||||||
|
• Apache Solr (Search platform)
|
||||||
13
content/BigData/Open Source.md
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
• Source Code available
|
||||||
|
• Free Redistribution
|
||||||
|
• Derived Works
|
||||||
|
|
||||||
|
![[Screenshot 2025-07-23 at 12.24.23.png]]
|
||||||
|
|
||||||
|
Open-source replace Closed-source
|
||||||
|
![[Screenshot 2025-07-23 at 12.25.00.png]]
|
||||||
|
|
||||||
|
More Open-source solutions
|
||||||
|
![[Screenshot 2025-07-23 at 12.25.28.png]]
|
||||||
|
|
||||||
|
![[Screenshot 2025-07-23 at 12.27.11.png]]![[Screenshot 2025-07-23 at 12.27.39.png]]
|
||||||
63
content/BigData/RDBMS.md
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
[[Database Overview]]
|
||||||
|
##### What is an RDBMS?
|
||||||
|
**Relational Database Management System**:
|
||||||
|
- Data is stored in **tables**:
|
||||||
|
- **Rows** = records
|
||||||
|
- **Columns** = fields
|
||||||
|
|
||||||
|
- Each table has:
|
||||||
|
- **Indexes** for fast searching
|
||||||
|
- **Relationships** with other tables (via keys)
|
||||||
|
|
||||||
|
##### Relational model - Keys and Indexes
|
||||||
|
Ability to find record(s) quickly
|
||||||
|
- Operations become efficient:
|
||||||
|
- **Find by key** → O(log n)
|
||||||
|
- **Fetch record by ID** → O(1)
|
||||||
|
|
||||||
|
Indexes = sorted references to data locations → like a book index.
|
||||||
|
|
||||||
|
##### Relational model - Operations
|
||||||
|
Relational databases support **CRUD**:
|
||||||
|
- **C**reate
|
||||||
|
- **R**ead
|
||||||
|
- **U**pdate
|
||||||
|
- **D**elete
|
||||||
|
|
||||||
|
Each operation uses both:
|
||||||
|
- The **index** (to locate data)
|
||||||
|
- The **data** itself (to read/write)
|
||||||
|
|
||||||
|
##### Relational model - Transactional
|
||||||
|
Relational databases guarantee **transaction safety** with ACID:
|
||||||
|
- **A**tomicity – all or nothing
|
||||||
|
- **C**onsistency – valid data only
|
||||||
|
- **I**solation – no interference from other transactions
|
||||||
|
- **D**urability – survives crashes
|
||||||
|
|
||||||
|
* Examples:
|
||||||
|
- Transferring money, Posting a tweet
|
||||||
|
- Both must either **succeed completely** or **fail completely**.
|
||||||
|
|
||||||
|
Transactions guarantee data validity despite errors & failures
|
||||||
|
|
||||||
|
##### Relational model - SQL
|
||||||
|
**SQL** is the language used to talk to relational databases.
|
||||||
|
- **S**tandard
|
||||||
|
- **Q**uery
|
||||||
|
- **L**anguage
|
||||||
|
|
||||||
|
- All RDBMSs use it (MySQL, PostgreSQL, Oracle, etc.)
|
||||||
|
|
||||||
|
##### Pros and Cons of RDBMS
|
||||||
|
**Pros:**
|
||||||
|
- Structured data
|
||||||
|
- ACID transactions
|
||||||
|
- Powerful SQL
|
||||||
|
- Fast (for small/medium size)
|
||||||
|
|
||||||
|
**Cons**:
|
||||||
|
- Doesn’t scale well (single machine or SPOF = Single Point of Failure)
|
||||||
|
- Becomes **slow** with **big data**
|
||||||
|
- **Less fault tolerant**
|
||||||
|
- Not designed for **massive, distributed systems**
|
||||||
BIN
content/BigData/res/Pasted image 20250723182835.png
Normal file
|
After Width: | Height: | Size: 156 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 11.58.31.png
Normal file
|
After Width: | Height: | Size: 887 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 11.58.48.png
Normal file
|
After Width: | Height: | Size: 883 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.08.22.png
Normal file
|
After Width: | Height: | Size: 584 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.08.48.png
Normal file
|
After Width: | Height: | Size: 358 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.09.30.png
Normal file
|
After Width: | Height: | Size: 72 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.10.02.png
Normal file
|
After Width: | Height: | Size: 128 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.16.32.png
Normal file
|
After Width: | Height: | Size: 1.9 MiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.20.09.png
Normal file
|
After Width: | Height: | Size: 217 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.24.23.png
Normal file
|
After Width: | Height: | Size: 1.6 MiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.25.00.png
Normal file
|
After Width: | Height: | Size: 1.3 MiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.25.28.png
Normal file
|
After Width: | Height: | Size: 1.2 MiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.27.11.png
Normal file
|
After Width: | Height: | Size: 485 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 12.27.39.png
Normal file
|
After Width: | Height: | Size: 994 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 13.00.20.png
Normal file
|
After Width: | Height: | Size: 905 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 13.01.20.png
Normal file
|
After Width: | Height: | Size: 660 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 13.29.37.png
Normal file
|
After Width: | Height: | Size: 675 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 13.54.07.png
Normal file
|
After Width: | Height: | Size: 216 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 14.20.31.png
Normal file
|
After Width: | Height: | Size: 752 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 16.52.08.png
Normal file
|
After Width: | Height: | Size: 111 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 17.48.07.png
Normal file
|
After Width: | Height: | Size: 569 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 17.51.04.png
Normal file
|
After Width: | Height: | Size: 283 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 17.52.39.png
Normal file
|
After Width: | Height: | Size: 299 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 18.25.32.png
Normal file
|
After Width: | Height: | Size: 266 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 18.27.30.png
Normal file
|
After Width: | Height: | Size: 642 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 18.42.46.png
Normal file
|
After Width: | Height: | Size: 114 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 18.45.25.png
Normal file
|
After Width: | Height: | Size: 95 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 18.46.55.png
Normal file
|
After Width: | Height: | Size: 93 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 18.50.10.png
Normal file
|
After Width: | Height: | Size: 709 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 18.50.16.png
Normal file
|
After Width: | Height: | Size: 410 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 19.08.40.png
Normal file
|
After Width: | Height: | Size: 182 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 19.11.44.png
Normal file
|
After Width: | Height: | Size: 594 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 19.12.57.png
Normal file
|
After Width: | Height: | Size: 692 KiB |
BIN
content/BigData/res/Screenshot 2025-07-23 at 19.17.31.png
Normal file
|
After Width: | Height: | Size: 625 KiB |