Add notes

This commit is contained in:
PinkR1ver 2024-06-17 11:35:16 +08:00
parent 1aaddd1265
commit 24ecf36a93
10 changed files with 113 additions and 2 deletions

View File

@ -16,4 +16,8 @@ date: 2023-12-03
# Doc Framework
* [Latex](computer_sci/code_frame_learn/doc/latex/MOC.md)
* [Latex](computer_sci/code_frame_learn/doc/latex/MOC.md)
# CV About Framework
* [Pillow](computer_sci/code_frame_learn/cv/pillow/pillow_moc.md)

View File

@ -0,0 +1,34 @@
---
title: font.getsize()
tags:
- cv
- python
- PIL
date: 2024-12-06
---
# Detail
Exact size depends on many factors. I'll just show you how to calculate different metrics of font.
[![](https://i.sstatic.net/gSBad.png)](https://i.sstatic.net/gSBad.png)
```python
font = ImageFont.truetype('arial.ttf', font_size)
ascent, descent = font.getmetrics()
(width, baseline), (offset_x, offset_y) = font.font.getsize(text)
```
- Height of red area: `offset_y`
- Height of green area: `ascent - offset_y`
- Height of blue area: `descent`
- Black rectangle: `font.getmask(text).getbbox()`
# Application Example
# Reference
* https://stackoverflow.com/questions/43060479/how-to-get-the-font-pixel-height-using-pils-imagefont-class

View File

@ -0,0 +1,12 @@
---
title: Pillow - MOC
tags:
- cv
- "#PIL"
- MOC
- python
date: 2024-06-12
---
# Font
* [font.getsize()](computer_sci/code_frame_learn/cv/pillow/font_getsize.md)

View File

@ -6,6 +6,11 @@ tags:
- data-visual
date: 2024-05-24
---
# Example
[My Streamlit Work List](computer_sci/code_frame_learn/data/streamlit/mywork_list.md)
# Reference
* https://streamlit.io/

View File

@ -0,0 +1,13 @@
---
title: My Streamlit Work List
tags:
- advanced
- work
- list
date: 2024-06-14
---
# My Streamlit Work List
* [https://final-score-true-sight.streamlit.app/](https://final-score-true-sight.streamlit.app/)
* [https://univariate-distribution.streamlit.app/](https://univariate-distribution.streamlit.app/)

View File

@ -24,3 +24,8 @@ How to evaluate a LLM performance?
# Basic
* [LLM Hyperparameter](computer_sci/deep_learning_and_machine_learning/LLM/basic/llm_hyperparameter.md)
# Related Technologies

View File

@ -0,0 +1,9 @@
---
title: What's RAG?
tags:
- LLM
date: 2024-06-12
---
# Reference
* https://arxiv.org/abs/2312.10997

View File

@ -0,0 +1,23 @@
---
title: Student's t-Distribution
tags:
- basic
- math
- distribution
- statistics
date: 2024-06-05
---
# Background
为什么这个分布被叫做Student's t-Distribution是因为作者William Gosset在1908年以化名名义Student发布。
t-Distribution在概率论及统计学中用于根据小样本量来估计总体呈现正态分布切标准差未知的期望。
从样子上讲Students T Distribution的样子很像Normal Distribution但有着一个fat tails。
# Reference
* https://www.youtube.com/watch?v=32CuxWdOlow

View File

@ -0,0 +1,5 @@
---
title: Bladder Phantom
tags:
- phantom
---

View File

@ -235,4 +235,5 @@ The unilateral or one-sided z-transform is very useful because we mostly deal wi
* [傅里叶系列(一)傅里叶级数的推导](https://zhuanlan.zhihu.com/p/41455378)
* [The Discrete Fourier Transform (DFT)](https://www.youtube.com/watch?v=nl9TZanwbBk)
* [The Fast Fourier Transform (FFT): Most Ingenious Algorithm Ever?](https://www.youtube.com/watch?v=h7apO7q16V0)
* [Eulers formula](https://www.notion.so/Euler-s-formula-d8e4462d5cda4e09a4ca4fcda7cd1392?pvs=21)
* [Eulers formula](https://www.notion.so/Euler-s-formula-d8e4462d5cda4e09a4ca4fcda7cd1392?pvs=21)
* https://www.andreinc.net/2024/04/24/from-the-circle-to-epicycles