chore: Update distribution titles and add reference links

This commit is contained in:
PinkR1ver 2024-06-03 21:55:37 +08:00
parent a8f53d807b
commit 1aaddd1265
2 changed files with 53 additions and 1 deletions

View File

@ -1,5 +1,5 @@
---
title: Exponential Distribution
title: Poisson Distribution & Exponential Distribution
tags:
- basic
- math
@ -64,6 +64,7 @@ $$
# Deduction
![](math/Statistics/basic_concepot/distribution/attachments/2bbb645362366906ace3296d35612625_720.jpg)
# Reference
* https://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html

View File

@ -56,6 +56,57 @@ Exponential Distribution指的是probability of the waiting time between even
Here's the exponential distribution explain: [Exponential Distribution](math/Statistics/basic_concepot/distribution/exponential_distribution_and_poisson_distribution.md)
# Introduction
终于来到我们的主题Gamma Distribution。
在概率论和统计学中Gamma Distribution是一种用途广泛的**双参数**连续概率分布。Exponential Distribution Erlang Distribution和Chi Distribution是Gamma Distribution的特殊情况。
Gamma Distribution可以被认为是*Exponential Distribution的extension*相比较于Exponential Distribution only infers the probability of the waiting time for the first event, **the Gamma Distribution gives us the probability of the waiting time util the $n_{th}$ event**.
## Deduction
因为T时间后时间第n次发生了也就意味着在时间t内发生了n-1次事件。
$$
P(T\leq t) = 1 - P(T>t) = 1 - P(\text{0 or 1 or } \cdots \text{n-1 events in t})
$$
so,
$$
P(T\leq t) = 1 - P(T>t) = 1 - \sum_{i=0}^{n-1} \frac{(\lambda t)^{i}e^{-\lambda t}}{i!}
$$
means,
$$
\text{CDF}(t) = 1 - \sum_{i=0}^{n-1} \frac{(\lambda t)^{i}e^{-\lambda t}}{i!}
$$
so,
$$
\text{PDF}(t) = \frac{d}{dt}(1 - \sum_{i=0}^{n-1} \frac{(\lambda t)^{i}e^{-\lambda t}}{i!})
$$
The result:
$$
\text{PDF}(t) = \frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!} = \frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{\Gamma(n)}
$$
推广到一般形式
$$
\text{Gamma Distribution, } \text{PDF}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}
$$
$\alpha$相当于之前的第个事件,再在分布中控制着分布的形状;$\beta$相当于之前的$\lambda$, 为速率参数,也是事件发生的到达率和强度;
同时Gamma Distribution也有另一套等效参数$(k, \theta)$,表现为:
$$
\text{Gamma Distribution, } \text{PDF}(x) = \frac{1}{\Gamma(k)\theta^{k}}x^{k-1}e^{-\frac{x}{\theta}}
$$
其中,$k=\alpha$, 控制着分布形状,$\beta = \frac{1}{\theta}$,控制着尺度
# Reference
* https://www.youtube.com/watch?v=c7_F4P71E2E