mirror of
https://github.com/jackyzha0/quartz.git
synced 2025-12-28 07:14:05 -06:00
chore: Update distribution titles and add reference links
This commit is contained in:
parent
a8f53d807b
commit
1aaddd1265
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Exponential Distribution
|
||||
title: Poisson Distribution & Exponential Distribution
|
||||
tags:
|
||||
- basic
|
||||
- math
|
||||
@ -64,6 +64,7 @@ $$
|
||||
# Deduction
|
||||
|
||||

|
||||
|
||||
# Reference
|
||||
|
||||
* https://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html
|
||||
|
||||
@ -56,6 +56,57 @@ Exponential Distribution指的是,probability of the waiting time between even
|
||||
Here's the exponential distribution explain: [Exponential Distribution](math/Statistics/basic_concepot/distribution/exponential_distribution_and_poisson_distribution.md)
|
||||
|
||||
|
||||
# Introduction
|
||||
|
||||
终于来到我们的主题,Gamma Distribution。
|
||||
|
||||
在概率论和统计学中,Gamma Distribution是一种用途广泛的**双参数**连续概率分布。Exponential Distribution, Erlang Distribution和Chi Distribution是Gamma Distribution的特殊情况。
|
||||
|
||||
Gamma Distribution可以被认为是*Exponential Distribution的extension*,相比较于Exponential Distribution only infers the probability of the waiting time for the first event, **the Gamma Distribution gives us the probability of the waiting time util the $n_{th}$ event**.
|
||||
|
||||
## Deduction
|
||||
|
||||
因为T时间后,时间第n次发生了,也就意味着,在时间t内,发生了n-1次事件。
|
||||
|
||||
$$
|
||||
P(T\leq t) = 1 - P(T>t) = 1 - P(\text{0 or 1 or } \cdots \text{n-1 events in t})
|
||||
$$
|
||||
|
||||
so,
|
||||
|
||||
$$
|
||||
P(T\leq t) = 1 - P(T>t) = 1 - \sum_{i=0}^{n-1} \frac{(\lambda t)^{i}e^{-\lambda t}}{i!}
|
||||
$$
|
||||
means,
|
||||
|
||||
$$
|
||||
\text{CDF}(t) = 1 - \sum_{i=0}^{n-1} \frac{(\lambda t)^{i}e^{-\lambda t}}{i!}
|
||||
$$
|
||||
so,
|
||||
|
||||
$$
|
||||
\text{PDF}(t) = \frac{d}{dt}(1 - \sum_{i=0}^{n-1} \frac{(\lambda t)^{i}e^{-\lambda t}}{i!})
|
||||
$$
|
||||
The result:
|
||||
|
||||
$$
|
||||
\text{PDF}(t) = \frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!} = \frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{\Gamma(n)}
|
||||
$$
|
||||
推广到一般形式
|
||||
|
||||
$$
|
||||
\text{Gamma Distribution, } \text{PDF}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}
|
||||
$$
|
||||
|
||||
$\alpha$相当于之前的第个事件,再在分布中控制着分布的形状;$\beta$相当于之前的$\lambda$, 为速率参数,也是事件发生的到达率和强度;
|
||||
|
||||
同时Gamma Distribution也有另一套等效参数$(k, \theta)$,表现为:
|
||||
|
||||
$$
|
||||
\text{Gamma Distribution, } \text{PDF}(x) = \frac{1}{\Gamma(k)\theta^{k}}x^{k-1}e^{-\frac{x}{\theta}}
|
||||
$$
|
||||
其中,$k=\alpha$, 控制着分布形状,$\beta = \frac{1}{\theta}$,控制着尺度
|
||||
|
||||
# Reference
|
||||
|
||||
* https://www.youtube.com/watch?v=c7_F4P71E2E
|
||||
|
||||
Loading…
Reference in New Issue
Block a user