mirror of
https://github.com/jackyzha0/quartz.git
synced 2025-12-27 23:04:05 -06:00
Add notes
This commit is contained in:
parent
183350a566
commit
a8f53d807b
0
content/.trash/Untitled 5.md
Normal file
0
content/.trash/Untitled 5.md
Normal file
8
content/.trash/series_MOC.md
Normal file
8
content/.trash/series_MOC.md
Normal file
@ -0,0 +1,8 @@
|
||||
---
|
||||
title: Series - MOC
|
||||
tags:
|
||||
- math
|
||||
- basic
|
||||
- series
|
||||
date: 2024-05-28
|
||||
---
|
||||
BIN
content/assets/pdf/ID.rar
Normal file
BIN
content/assets/pdf/ID.rar
Normal file
Binary file not shown.
@ -8,4 +8,5 @@ date: 2024-05-24
|
||||
---
|
||||
# Reference
|
||||
|
||||
* https://streamlit.io/
|
||||
* https://streamlit.io/
|
||||
* https://30days.streamlit.app/
|
||||
@ -13,7 +13,7 @@ Quantile loss用于衡量预测分布和目标分布之间的差异,特别适
|
||||
|
||||
# What is quantile
|
||||
|
||||
[Quantile](math/Statistics/Basic/Quantile.md)
|
||||
[quantile_concept](math/Statistics/basic_concepot/quantile_concept.md)
|
||||
|
||||
# What is a prediction interval
|
||||
|
||||
|
||||
@ -16,7 +16,12 @@ date: 2024-05-21
|
||||
|
||||
## Basic
|
||||
|
||||
### Antenna
|
||||
|
||||
* [Antenna](electrical_electronics/RF/antenna/antenna.md)
|
||||
## SAR
|
||||
* [Vivaldi Antenna](electrical_electronics/RF/antenna/vivaldi_antenna.md)
|
||||
|
||||
## Algorithm
|
||||
### SAR
|
||||
|
||||
* [SAR_MOC](electrical_electronics/RF/algrothim/SAR/SAR_MOC.md)
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 50 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 28 KiB |
@ -4,5 +4,21 @@ tags:
|
||||
- antenna
|
||||
date: 2024-05-24
|
||||
---
|
||||
|
||||
# Background Knowledge
|
||||
|
||||
* [Maxwells Equation](physics/electromagnetism/maxwells_equation.md)
|
||||
|
||||
# Introduction
|
||||
|
||||
## History
|
||||
|
||||
Vivaldi antenna, also known as a **tapered slot antenna**(TSA, 锥形槽天线),是一种线性极化平面天线,由P.J.Gibson于 1978 年发明,他最初将其称为维瓦尔第天线。Vivaldi antenna是宽带宽traveling antennas的一员。
|
||||
|
||||
## Antenna Structure
|
||||
|
||||
|
||||
|
||||
# Reference
|
||||
|
||||
* https://jemengineering.com/blog-anatomy-of-a-vivaldi-antenna/
|
||||
@ -10,7 +10,7 @@ date: 2023-12-03
|
||||
|
||||
## Basic Concept
|
||||
|
||||
* [Quantile](math/Statistics/Basic/Quantile.md)
|
||||
* [quantile_concept](math/Statistics/basic_concepot/quantile_concept.md)
|
||||
|
||||
## Significance Test
|
||||
|
||||
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 107 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 89 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 792 KiB |
@ -0,0 +1,11 @@
|
||||
---
|
||||
title: Beta-Binomial Distribution
|
||||
tags:
|
||||
- basic
|
||||
- math
|
||||
- distribution
|
||||
date: 2024-05-28
|
||||
---
|
||||
# Reference
|
||||
|
||||
* https://medium.com/@ro.mo.flo47/the-beta-binomial-model-an-introduction-to-bayesian-statistics-154395875f93
|
||||
@ -0,0 +1,71 @@
|
||||
---
|
||||
title: Exponential Distribution
|
||||
tags:
|
||||
- basic
|
||||
- math
|
||||
- statistics
|
||||
- distribution
|
||||
date: 2024-06-03
|
||||
---
|
||||
# Background
|
||||
|
||||
## Poisson Process
|
||||
|
||||
日常生活中,大量的事件是有固定频率的。
|
||||
|
||||
- 某医院平均每小时出生3个婴儿
|
||||
- 某公司平均每10分钟接到1个电话
|
||||
- 某超市平均每天销售4包xx牌奶粉
|
||||
- 某网站平均每分钟有2次访问
|
||||
|
||||
$N(t)$等于t时间内发生事件的次数,在这个过程中,两个不重叠区间内所发生的事件数目是互相独立的随机变量,那么这个随机过程$N(t)$即是一维泊松过程。
|
||||
|
||||
# Poisson Distribution
|
||||
|
||||
这个过程中,在区$[t, t+\tau]$内发生的事件数目的概率分布满足Poisson Distribution,
|
||||
$$
|
||||
P[(N(t+\tau) - N(t)) = k] = \frac{e^{-\lambda\tau}(\lambda\tau)^k}{k!}, \quad k=0,1,\cdots
|
||||
$$
|
||||
|
||||
$\lambda$是一个正数,为固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。常常用事件在单位长度$\tau$内发生的平均频率表达。
|
||||
|
||||
Poisson Distribution可以将t代为0,简化为在接下来单位时间$\tau$内有k次时间发生的概率的分布:
|
||||
|
||||
$P(N(t) = k) = \frac{e^{-\lambda t}(\lambda t)^k}{k!}$
|
||||
|
||||
# Exponential Distribution
|
||||
|
||||
这些事件之间的时间间隔,是属于指数分布。
|
||||
|
||||
指数分布的公式可以从泊松分布推断出来。如果下一个事件发生要有间隔时间 t ,就等同于 t 之内没有任何事件发生。
|
||||
|
||||
$$
|
||||
P(X>t) = P(N(t)=0) = \frac{e^{-\lambda t}(\lambda t)^0}{0!} = e^{-\lambda t}
|
||||
$$
|
||||
|
||||
so,
|
||||
|
||||
$$
|
||||
P(X\leq t) = 1 - P(X>t) = 1 - e^{-\lambda t}
|
||||
$$
|
||||
|
||||
那么指数分布的CDF即为$P(X\leq t)$,同时有:
|
||||
|
||||
$$
|
||||
\text{CDF}(t) = \int_{-\infty}^{\infty} \text{PDF}(t) dt
|
||||
$$
|
||||
则,可以推导出:
|
||||
|
||||
$$
|
||||
\text{PDF}(t) = (1-e^{-\lambda t})' = \lambda e^{-\lambda t}
|
||||
$$
|
||||
|
||||
|
||||
# Deduction
|
||||
|
||||

|
||||
# Reference
|
||||
|
||||
* https://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html
|
||||
* https://zh.wikipedia.org/wiki/%E6%B3%8A%E6%9D%BE%E8%BF%87%E7%A8%8B
|
||||
* https://www.le.ac.uk/users/dsgp1/COURSES/LEISTATS/poisson.pdf
|
||||
@ -0,0 +1,62 @@
|
||||
---
|
||||
title: Gamma Distribution
|
||||
tags:
|
||||
- basic
|
||||
- math
|
||||
- statistics
|
||||
date: 2024-06-03
|
||||
---
|
||||
|
||||
# Background
|
||||
|
||||
## Gamma Function
|
||||
|
||||
Factorial:
|
||||
|
||||
$$
|
||||
n! = \prod_{i=1}^{n} i = 1\times2\times3\times\cdots\times n
|
||||
$$
|
||||
那如何计算$\frac{3}{2}!$呢?通过对阶乘函数的插值将阶乘函数托展到non-integer value。但是插值的方法有很多,要如何选择合适的插值的方法?
|
||||
|
||||
最重要的条件是,插值后的函数要满足阶乘最重要的条件,
|
||||
|
||||
$$
|
||||
n! = n\times(n-1)!
|
||||
$$
|
||||
这个插值后的广义阶乘,就是**Gamma Function**:
|
||||
|
||||
$$
|
||||
\Gamma(z) = \int_{0}^{\infty} x^{z-1}e^{-x}dx
|
||||
$$
|
||||
可以验算,阶乘最重要的性质并没有变,不过形式有所偏移,性质如下:
|
||||
|
||||
$$
|
||||
\Gamma(z+1)=z \times \Gamma(z)
|
||||
$$
|
||||
证明如下:
|
||||
|
||||

|
||||
|
||||
同时,在integer节点,Gamma function也和阶乘对应起来,即:
|
||||
|
||||
$$
|
||||
\Gamma(n+1) = n!
|
||||
$$
|
||||
|
||||
证明如下:
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
## Exponential Distribution
|
||||
|
||||
Exponential Distribution指的是,probability of the waiting time between events in a Poisson Process
|
||||
|
||||
Here's the exponential distribution explain: [Exponential Distribution](math/Statistics/basic_concepot/distribution/exponential_distribution_and_poisson_distribution.md)
|
||||
|
||||
|
||||
# Reference
|
||||
|
||||
* https://www.youtube.com/watch?v=c7_F4P71E2E
|
||||
* https://www.youtube.com/watch?v=GJoZWPocAm0
|
||||
@ -15,4 +15,8 @@ date: 2024-05-24
|
||||
# Integration
|
||||
|
||||
* [Common Integration](math/calculus/integration/common_integration.md)
|
||||
* [Integration by Parts](math/calculus/integration/integration_by_parts.md)
|
||||
* [Integration by Parts](math/calculus/integration/integration_by_parts.md)
|
||||
|
||||
# Series
|
||||
|
||||
*
|
||||
@ -7,5 +7,6 @@ tags:
|
||||
- math
|
||||
date: 2024-05-24
|
||||
---
|
||||
## cos(x)
|
||||
# Reference
|
||||
|
||||
* https://www.youtube.com/watch?v=oBlHiX6vrQY
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 47 KiB |
10
content/math/calculus/series/common_series.md
Normal file
10
content/math/calculus/series/common_series.md
Normal file
@ -0,0 +1,10 @@
|
||||
---
|
||||
title: Common Series
|
||||
tags:
|
||||
- math
|
||||
- calculus
|
||||
- series
|
||||
date: 2024-05-28
|
||||
---
|
||||
## $\frac{1}{n!}$
|
||||
|
||||
17
content/math/calculus/series/convergence_tests.md
Normal file
17
content/math/calculus/series/convergence_tests.md
Normal file
@ -0,0 +1,17 @@
|
||||
---
|
||||
title: Series Convergence Tests - 级数收敛判断
|
||||
tags:
|
||||
- math
|
||||
- calculus
|
||||
- series
|
||||
date: 2024-05-28
|
||||
---
|
||||
# 无穷级数的敛散性
|
||||
|
||||

|
||||
|
||||
# Reference
|
||||
|
||||
* https://zh.wikipedia.org/wiki/%E7%BA%A7%E6%95%B0#%E6%97%A0%E7%A9%B7%E7%BA%A7%E6%95%B0%E7%9A%84%E6%95%9B%E6%95%A3%E6%80%A7
|
||||
* https://en.wikipedia.org/wiki/Series_(mathematics)#Calculus_and_partial_summation_as_an_operation_on_sequences
|
||||
* https://zhuanlan.zhihu.com/p/416667179
|
||||
Loading…
Reference in New Issue
Block a user