Add notes

This commit is contained in:
PinkR1ver 2024-06-03 20:21:33 +08:00
parent 183350a566
commit a8f53d807b
22 changed files with 212 additions and 6 deletions

View File

View File

@ -0,0 +1,8 @@
---
title: Series - MOC
tags:
- math
- basic
- series
date: 2024-05-28
---

BIN
content/assets/pdf/ID.rar Normal file

Binary file not shown.

View File

@ -8,4 +8,5 @@ date: 2024-05-24
---
# Reference
* https://streamlit.io/
* https://streamlit.io/
* https://30days.streamlit.app/

View File

@ -13,7 +13,7 @@ Quantile loss用于衡量预测分布和目标分布之间的差异特别适
# What is quantile
[Quantile](math/Statistics/Basic/Quantile.md)
[quantile_concept](math/Statistics/basic_concepot/quantile_concept.md)
# What is a prediction interval

View File

@ -16,7 +16,12 @@ date: 2024-05-21
## Basic
### Antenna
* [Antenna](electrical_electronics/RF/antenna/antenna.md)
## SAR
* [Vivaldi Antenna](electrical_electronics/RF/antenna/vivaldi_antenna.md)
## Algorithm
### SAR
* [SAR_MOC](electrical_electronics/RF/algrothim/SAR/SAR_MOC.md)

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -4,5 +4,21 @@ tags:
- antenna
date: 2024-05-24
---
# Background Knowledge
* [Maxwells Equation](physics/electromagnetism/maxwells_equation.md)
# Introduction
## History
Vivaldi antenna, also known as a **tapered slot antenna**(TSA, 锥形槽天线)是一种线性极化平面天线由P.J.Gibson于 1978 年发明他最初将其称为维瓦尔第天线。Vivaldi antenna是宽带宽traveling antennas的一员。
## Antenna Structure
# Reference
* https://jemengineering.com/blog-anatomy-of-a-vivaldi-antenna/

View File

@ -10,7 +10,7 @@ date: 2023-12-03
## Basic Concept
* [Quantile](math/Statistics/Basic/Quantile.md)
* [quantile_concept](math/Statistics/basic_concepot/quantile_concept.md)
## Significance Test

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 792 KiB

View File

@ -0,0 +1,11 @@
---
title: Beta-Binomial Distribution
tags:
- basic
- math
- distribution
date: 2024-05-28
---
# Reference
* https://medium.com/@ro.mo.flo47/the-beta-binomial-model-an-introduction-to-bayesian-statistics-154395875f93

View File

@ -0,0 +1,71 @@
---
title: Exponential Distribution
tags:
- basic
- math
- statistics
- distribution
date: 2024-06-03
---
# Background
## Poisson Process
日常生活中,大量的事件是有固定频率的。
- 某医院平均每小时出生3个婴儿
- 某公司平均每10分钟接到1个电话
- 某超市平均每天销售4包xx牌奶粉
- 某网站平均每分钟有2次访问
$N(t)$等于t时间内发生事件的次数在这个过程中两个不重叠区间内所发生的事件数目是互相独立的随机变量那么这个随机过程$N(t)$即是一维泊松过程。
# Poisson Distribution
这个过程中,在区$[t, t+\tau]$内发生的事件数目的概率分布满足Poisson Distribution,
$$
P[(N(t+\tau) - N(t)) = k] = \frac{e^{-\lambda\tau}(\lambda\tau)^k}{k!}, \quad k=0,1,\cdots
$$
$\lambda$是一个正数,为固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。常常用事件在单位长度$\tau$内发生的平均频率表达。
Poisson Distribution可以将t代为0简化为在接下来单位时间$\tau$内有k次时间发生的概率的分布
$P(N(t) = k) = \frac{e^{-\lambda t}(\lambda t)^k}{k!}$
# Exponential Distribution
这些事件之间的时间间隔,是属于指数分布。
指数分布的公式可以从泊松分布推断出来。如果下一个事件发生要有间隔时间 t ,就等同于 t 之内没有任何事件发生。
$$
P(X>t) = P(N(t)=0) = \frac{e^{-\lambda t}(\lambda t)^0}{0!} = e^{-\lambda t}
$$
so,
$$
P(X\leq t) = 1 - P(X>t) = 1 - e^{-\lambda t}
$$
那么指数分布的CDF即为$P(X\leq t)$,同时有:
$$
\text{CDF}(t) = \int_{-\infty}^{\infty} \text{PDF}(t) dt
$$
则,可以推导出:
$$
\text{PDF}(t) = (1-e^{-\lambda t})' = \lambda e^{-\lambda t}
$$
# Deduction
![](math/Statistics/basic_concepot/distribution/attachments/2bbb645362366906ace3296d35612625_720.jpg)
# Reference
* https://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html
* https://zh.wikipedia.org/wiki/%E6%B3%8A%E6%9D%BE%E8%BF%87%E7%A8%8B
* https://www.le.ac.uk/users/dsgp1/COURSES/LEISTATS/poisson.pdf

View File

@ -0,0 +1,62 @@
---
title: Gamma Distribution
tags:
- basic
- math
- statistics
date: 2024-06-03
---
# Background
## Gamma Function
Factorial:
$$
n! = \prod_{i=1}^{n} i = 1\times2\times3\times\cdots\times n
$$
那如何计算$\frac{3}{2}!$呢通过对阶乘函数的插值将阶乘函数托展到non-integer value。但是插值的方法有很多要如何选择合适的插值的方法
最重要的条件是,插值后的函数要满足阶乘最重要的条件,
$$
n! = n\times(n-1)!
$$
这个插值后的广义阶乘,就是**Gamma Function**
$$
\Gamma(z) = \int_{0}^{\infty} x^{z-1}e^{-x}dx
$$
可以验算,阶乘最重要的性质并没有变,不过形式有所偏移,性质如下:
$$
\Gamma(z+1)=z \times \Gamma(z)
$$
证明如下:
![](math/Statistics/basic_concepot/distribution/attachments/prove.jpg)
同时在integer节点Gamma function也和阶乘对应起来
$$
\Gamma(n+1) = n!
$$
证明如下:
![](math/Statistics/basic_concepot/distribution/attachments/df15541df80b6065fb8296d80ffceac5_720.jpg)
## Exponential Distribution
Exponential Distribution指的是probability of the waiting time between events in a Poisson Process
Here's the exponential distribution explain: [Exponential Distribution](math/Statistics/basic_concepot/distribution/exponential_distribution_and_poisson_distribution.md)
# Reference
* https://www.youtube.com/watch?v=c7_F4P71E2E
* https://www.youtube.com/watch?v=GJoZWPocAm0

View File

@ -15,4 +15,8 @@ date: 2024-05-24
# Integration
* [Common Integration](math/calculus/integration/common_integration.md)
* [Integration by Parts](math/calculus/integration/integration_by_parts.md)
* [Integration by Parts](math/calculus/integration/integration_by_parts.md)
# Series
*

View File

@ -7,5 +7,6 @@ tags:
- math
date: 2024-05-24
---
## cos(x)
# Reference
* https://www.youtube.com/watch?v=oBlHiX6vrQY

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

View File

@ -0,0 +1,10 @@
---
title: Common Series
tags:
- math
- calculus
- series
date: 2024-05-28
---
## $\frac{1}{n!}$

View File

@ -0,0 +1,17 @@
---
title: Series Convergence Tests - 级数收敛判断
tags:
- math
- calculus
- series
date: 2024-05-28
---
# 无穷级数的敛散性
![](math/calculus/series/attachments/Pasted%20image%2020240528113553.png)
# Reference
* https://zh.wikipedia.org/wiki/%E7%BA%A7%E6%95%B0#%E6%97%A0%E7%A9%B7%E7%BA%A7%E6%95%B0%E7%9A%84%E6%95%9B%E6%95%A3%E6%80%A7
* https://en.wikipedia.org/wiki/Series_(mathematics)#Calculus_and_partial_summation_as_an_operation_on_sequences
* https://zhuanlan.zhihu.com/p/416667179