--- title: "taylor" --- #math/calculus # formula #card/reverse $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n}$ $n ! \quad=$ factorial of $\mathrm{n}$ $a \quad=$ real or complex number $f^{(n)}(a)=$ nth derivative of $f$ evaluated at the point a ![[Pasted image 20220603201244.png]] mclaurin series is the same, except a is 0 # When it's a power series if $\sum\limits_{n=0}^{\infty}c_{n}(x-a)^{n}= f(x)$, so if $f(x)=\lim_{x->\infty}T(x)$ and $T(x)=\sum\limits_{i=0}^{n}f^{i}\frac{a}{i!}(x-a)^i$, and remainder $Rn(x)=f(x)-T(x)$ its a power series if $lim_{x->0}Rn(x)=0$ $|R_{n}(x)|\leq \frac{M}{(n+1)!}|x-a|^{n+1}$ if $|f^{n+1}(x)|\leq M|x-2|\leq d$ for example, in the case of a taylor series for $e^{x}$ centered at 2: $|e^{x}|\leq e^{d+2}= M$ thus $|Rn(x)|\leq \frac{e^{d+2}}{(n+1)!}d^{n+1}$ lim both approach zero, so $e^{x}= \sum\limits_{n=0}^{\infty} \frac{e^{2}}{n!}(x-2)^n$ # nice power series $e^n=$ ::: $\sum\limits \frac{x^{n}}{n!}$ $\frac{1}{1-x}=$ ::: $\sum\limits x^{n}$ $sin(x)$ ::: $\sum\limits \frac{(-1)^{n}x^{2n+1}}{(2n+1)!}$ $arctan(x)$ ::: $\sum\limits \frac{(-1)^{n}x^{2n}}{2n!}$ [[binomial series]] [[binomial series]]