--- title: Gamma Distribution tags: - basic - math - statistics date: 2024-06-03 --- # Background ## Gamma Function Factorial: $$ n! = \prod_{i=1}^{n} i = 1\times2\times3\times\cdots\times n $$ 那如何计算$\frac{3}{2}!$呢?通过对阶乘函数的插值将阶乘函数托展到non-integer value。但是插值的方法有很多,要如何选择合适的插值的方法? 最重要的条件是,插值后的函数要满足阶乘最重要的条件, $$ n! = n\times(n-1)! $$ 这个插值后的广义阶乘,就是**Gamma Function**: $$ \Gamma(z) = \int_{0}^{\infty} x^{z-1}e^{-x}dx $$ 可以验算,阶乘最重要的性质并没有变,不过形式有所偏移,性质如下: $$ \Gamma(z+1)=z \times \Gamma(z) $$ 证明如下: ![](math/Statistics/basic_concepot/distribution/attachments/prove.jpg) 同时,在integer节点,Gamma function也和阶乘对应起来,即: $$ \Gamma(n+1) = n! $$ 证明如下: ![](math/Statistics/basic_concepot/distribution/attachments/df15541df80b6065fb8296d80ffceac5_720.jpg) ## Exponential Distribution Exponential Distribution指的是,probability of the waiting time between events in a Poisson Process Here's the exponential distribution explain: [Exponential Distribution](math/Statistics/basic_concepot/distribution/exponential_distribution_and_poisson_distribution.md) # Reference * https://www.youtube.com/watch?v=c7_F4P71E2E * https://www.youtube.com/watch?v=GJoZWPocAm0