--- cards-deck: default_obsidian --- #math/calculus #math/calculus # trig identity ## basic $sin^2x$ ::: $sin^2x+cos^2x=1$ ^1651675101678 $sin^2x$ halves ::: $sin^2x=1/2(1-cos{2x})$ ^1651675101686 $cos^2x$ ::: $\cos^2x=1/2(1+\cos{2x})$ ^1651674952732 $\sin x\cos x$ ::: $=\frac{1}{2}sin2x$ ^1651675101693 ## $tan^{2}x + 1$ #card/reverse $tan^{2}x + 1 = sec^{2}x$ because: $\frac{sin^{2}x}{cos^{2}x} + \frac{cos^{2}x}{cos^{2}x} = \frac{1}{cos^{2}x}$ ^1651675939328 ## derivatives $\frac{dx}{dy}\sec x$ ::: $\tan x \sec x$ ^1651677169665 $\frac{dx}{dy}\tan x$ ::: $\sec^{2}x$ ^1651679351621 $\frac{d x}{d y} \ln |x|$ ::: $\frac{1}{x}$ ^1652457023180 ## integrals $\int \sec x dx$ ::: $\ln |\sec x + \tan x|$ ^1651679351627 $\int \tan x dx$ ::: $\ln |\cos x|+C$ ^1652457023184 ## crazy identities $\sin A \cos B$ ::: $\frac{1}{2}(\sin(A-B)+\sin(A+B))$ ^1651679351632 $\sin A \sin B$ ::: $\frac{1}{2}(\cos(A-B)-\cos(A+B))$ ^1651679351636 $\cos A \cos B$ ::: $\frac{1}{2}(\cos(A-B)+\cos(A+B))$ ^1651679351639 $\csc^{2}x=$ ::: $=1+\cot^{2}x$ ^1652457023188