# L12 Continuous Joint Distributions (WMS 5.1-8) 1. Joint Density - Compare discrete/continuous pdf and joint pdf - Warehouse stocks up to two pallets of cereal $X$ and one pallet of cereal $Y$, with density $f(x,y) = c(x + 2y);x\in\lbrack 0,2\rbrack,y\in\lbrack 0,1\rbrack$. - Height of joint pdf represents likelihood of particular $(x,y)$ pairs. Must integrate to one (double integral). $1 = \int_{x=0}^{2}\int_{y=0}^1c(x + 2y)dydx = \int_{x=0}^{2}(cx + c)dx = 4c$ requires $c =\frac{1}{4}$, or $f(x,y) =\frac{1}{4}x +\frac{1}{2}y;x\in\lbrack 0,2\rbrack,y\in\lbrack 0,1\rbrack$. - Mode: since upward sloping in both dimensions, mode at $(x,y) = (2,1)$ 2. Marginal densities - Analogous to margins of table in discrete joint distribution: total probability of particular realization of $x$ is the sum of all joint probabilities of $(x,y)$ pairs, with that particular $x$ value, but any $y$ value in domain. - $f_{x}(x) =\int_{y=0}^{1}\frac{1}{4}(x + 2y)dy =\frac{1}{4}x +\frac{1}{4};x\in\lbrack 0,2\rbrack$ - $f_{y}(y) =\int_{x=0}^{2}\frac{1}{4}(x + 2y)dx =\frac{1}{2} + y;y\in\lbrack 0,1\rbrack$ - Subscript simply distinguishes $f_{x}(.5)$ from $f_{y}(.5)$ - Moments: means, standard deviations 1. $\mu_{x} = E(X) = \int_{x=0}^{2}xf_{x}(x)\text{dx}$ $= \int_{x=0}^{2}x(\frac{1}{4}x +\frac{1}{4})dx =\frac{2}{3} +\frac{1}{2} =\frac{7}{6}$ 2. $E(X^{2}) = \int_{x=0}^{2}x^{2}f_{x}(x)\text{dx}$ $= \int_{x=0}^{2}x^{2}(\frac{1}{4}x +\frac{1}{4})dx = 1 +\frac{2}{3} =\frac{5}{3}$ 3. $V(X) = E(X^{2}) -\mu_{x}^{2} =\frac{5} {3} -(\frac{7}{6})^{2} =\frac{11}{36}$ 4. $\sigma_{x} = \sqrt{V(X)} =\sqrt{\frac{11}{36}}\approx .55$ 5. $\mu_{y} = E(Y) = \int_{y=0}^{1}yf_{y}(y)\text{dy}$ $= \int_{y=0}^{1}y(\frac{1}{2} + y)dy =\frac{1}{4} +\frac{1}{3} =\frac{7}{12}$ 6. $E(Y^{2}) = \int_{y=0}^{1}y^{2}f_{y}(y)\text{dy}$ $= \int_{y=0}^{1}y^{2}(\frac{1}{2} + y)dy =\frac{1}{6} +\frac{1}{4} =\frac{5}{12}$ 7. $V(Y) = E(Y^{2}) -\mu_{y}^{2} =\frac{5}{12} -(\frac{7}{12})^{2} =\frac{11}{144}$ 8. $\sigma_{y} = \sqrt{Y} =\sqrt{\frac{11}{144}}\approx 0.28$ 9. Could also derive mode, median, cdf, percentiles of $X$ or $Y$ - Independence requires $f(x,y) = f_{x}(x)f_{y}(y)$ for all $(x,y)$ pairs. 1. $X$ and $Y$ not independent here, since $f(x,y) =\frac{1}{4}(x + 2y)\neq(\frac{1}{4}x +\frac{1}{4})(\frac{1}{2} + y)$ (e.g. when $(x,y) = (0,0)$) 3. Correlation - $E(\text{XY}) =\int_{x=0}^{2}\int_{y=0}^{1}\text{xyf}(x,y)\text{dydx}$ $=\int_{x=0}^{2}\int_{y=0}^{1}\text{xy}\lbrack\frac{1}{4}(x + 2y)\rbrack dydx =\int_{x=0}^{2}(\frac{1}{8}x^{2} +\frac{1}{6}x)dx =\frac{1}{3} +\frac{1}{3} =\frac{2}{3}$ - $\sigma_{\text{xy}} = Cov(X,Y) = E(\text{XY}) -\mu_{x}\mu_{y}$ $=\frac{2}{3} -(\frac{7}{6})(\frac{7}{12}) = -\frac{1}{72}$ - $\rho =\frac{\sigma_{\text{xy}}}{\sigma_{x}\sigma_{y}} =\frac{-\frac{1}{72}}{(.55)(.28)}\approx - .09$ 4. Practice example: $f(x,y) = c(1 - xy)$ for $x,y\in\lbrack 0,1\rbrack$ - Find $c$: $\int_{x=0}^{1}\int_{y=0}^{1}c(1 - xy)dydx =\frac{3}{4}c$ implies $c =\frac{4}{3}$ - Find marginal densities $f_{x}$, $f_{y}$: $f_{x}(x) =\int_{y=0}^1\frac{4}{3}(1 - xy)dy =\ldots =\frac{4}{3} -\frac{2}{3}x$ for $x\in\lbrack 0,1\rbrack$; symmetrically, $f_{y}(y) =\frac{4}{3} -\frac{2}{3}y$ for $y\in\lbrack 0,1\rbrack$ - Find means $\mu_{x}$ and $\mu_{y}$ and standard deviations $\sigma_{x}$ and $\sigma_{y}$: $\mu_{x} = E(X) = \int_{x=0}^1x(\frac{4}{3} -\frac{2}{3}x)dx =\ldots =\frac{4}{9}$ $E(X^{2}) = \int_{x=0}^1x^{2}(\frac{4}{3} -\frac{2}{3}x)dx =\ldots =\frac{5}{18}$ $\sigma_{x}^{2} =\frac{5}{18} -(\frac{4}{9})^{2} =\frac{13}{162}$ $\sigma_{x} =\sqrt{\frac{13}{162}}\approx .283$ Symmetrically, $\mu_{y} =\frac{4}{9}$, $\sigma_{y}\approx .283$ - Correlation $\rho$: $E(\text{XY}) =\int_{x=0}^1\int_{y=0}^1\text{xy}\frac{4}{3}(1 - xy)dydx =\frac{5}{27}$ $\sigma_{\text{xy}} = E(\text{XY}) -\mu_{x}\mu_{y}\approx\frac{5}{27} -(\frac{4}{9})^{2} = -\frac{1}{81}\approx - .012$ $\rho =\frac{\sigma_{\text{xy}}}{\sigma_{x}\sigma_{y}} =\frac{-\frac{1}{81}}{\sqrt{\frac{13}{162}}\sqrt{\frac{13}{162}}} = -\frac{2}{13}\approx - 0.154$