#math/linear_algebra ## theorem on product of determinants $det(AB)=(detA)(detB)$ **WARNING** $det(A+B)\neq detA-detB$ ## theorem for determinant of invertible matrix $det(A^{-1})=\frac{1}{detA}$ ## characteristic equation $\operatorname{det}(A-\lambda I)=0$ # ways of computing ![[Pasted image 20220526165055.png]] Definition (Determinant of $A$ ) ![[Pasted image 20220526165329.png]] ![[Pasted image 20220526165339.png]] For a $1 \times 1$ matrix $A=[a]$, the determinant of $A$, $\operatorname{denoted}$ by $\operatorname{det} A$, is defined to be $$ \operatorname{det} A=a $$ For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is the sum $$ \begin{aligned} \operatorname{det} A &=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\ldots+(-1)^{n+1} a_{1 n} \operatorname{det} A_{1 n} \\ &=\sum_{i=1}^{n}(-1)^{i+1} a_{1 i} \operatorname{det} A_{1 i} \end{aligned} $$ Sometimes we use absolute value brackets to denote the determinant, i.e. we sometimes write $|A|$ to $\operatorname{denote} \operatorname{det} A$.