#math/calculus # Direct Comparison Test $\sum\limits \frac{1}{2^{n+1}} \textasciitilde \sum\limits \frac{1}{2^n}$ 1. if $\sum b_{n}$ converges $\&\ a_{n} \sum a_{n}$ converges 2. if $\sum b_{n}$ diverges $\&\ a_{n}>b_{n} \forall n \Rightarrow \sum\limits a_{n}$ diverges # Limit Comparison Test it's actually just an addition to the principle of an upper bound. It evaluates limits directly. for all $\sum\limits a_{n}, \sum\limits b_{n}$ positive, $\lim_{n\Rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ exists if c>0 & is finite, then a follows b $c=0 \Rightarrow$ both converge $c=\infty \Rightarrow$ both diverge # Error for estimated If the sum itself is hard to compute, bound it with a diverging series above and use that series' error function. $R_{n}\leq T_{n} < \frac{1}{2n^{2}}$