--- title: Chirp - 啁啾 tags: - basic - signal date: 2023-06-30 --- 啁啾(Chirp)是指频率随时间而改变(增加或减少)的信号。其名称来源于这种信号听起来类似鸟鸣的啾声。 ![](electrical_electronics/RF/algrothim/SAR/attachments/Linear-chirp.svg) Chirp常常被用在sonar, radar, laser systems里。其中,为了能够测量长距离又保留时间的分辨率,雷达需要短时间的派冲波但是又要持续的发射信号,啁啾信号可以同时保留连续信号和脉冲的特性,因此被应用在雷达和声纳探测上。 # Definition ## 瞬时频率 (instantaneous angular frequency) 有一信号,$x(t)=A\sin{(\phi(t))}$,其瞬时角频率为 $$ \omega(t)=\frac{d\phi(t)}{dt} $$ 经适当归一化后得到瞬时频率 $$ f(t)=\frac{1}{2\pi}\frac{d\phi(t)}{dt} $$ ## 啁啾度 对前两式再求导,得到瞬时角频率的变化速率为**瞬时角啁啾度**(instantaneous angular chirpyness) $$ \gamma(t)=\frac{d^2\phi(t)}{dt^2} $$ 类似有**瞬时(普通)啁啾度**(instantaneous ordinary chirpyness) $$ c(t)=\frac{1}{2\pi}\gamma(t)=\frac{1}{2\pi}\frac{d^2\phi(t)}{dt^2} $$ # Types ## Linear ![](electrical_electronics/RF/algrothim/SAR/attachments/Pasted%20image%2020230418110700.png) 啁啾的瞬时频率$f(t)$呈线性变化 $$f(t)=f_0 + ct$$ $$ c = \frac{f_1-f_0}{T} $$ c是一个常值 Also, $$ \phi(t)=\phi_0 + 2\pi \int_{0}^t f(\tau)d\tau =\phi_0 = 2\pi(\frac{c}{2}t^2 + f_0 t) $$ 相位为t的二次函数,从而可以继续推导出信号在time domain: $$ x(t)=A \cos{(\phi_0 + 2\pi (\frac{c}{2}t^2 + f_0 t))} $$ 这种Linear Chirp信号也被称为二次相位讯号(**quadratic-phase signal**) ## Exponential ![](electrical_electronics/RF/algrothim/SAR/attachments/Pasted%20image%2020230418111708.png) Exponential chirp,也叫geometric chirp,瞬时频率以指数变化,即$f(t_2)/f(t_1)$会是常数 signal frequency: $$ f(t)=f_0 k^t $$ $$ k = (\frac{f(T)}{f_0})^{\frac{1}{T}} = \text{constant} $$ 相位: $$ \phi(t)=\phi_0 + 2\pi\int_0^t f(\tau)d\tau = \phi_0 + 2\pi f_0 (\frac{k^t - 1}{\ln(k)}) $$ time-domain: $$ x(t) = \sin{[\phi_0 + 2\pi f_0(\frac{k^t - 1}{\ln(k)})]} $$ ## Hyperbolic 双曲线线性调频用于雷达应用,因为它们在被多普勒效应([Doppler Effect](physics/wave/doppler_effect.md))扭曲后显示出最大的匹配滤波器([Matched filter](https://en.wikipedia.org/wiki/Matched_filter))响应。 signal frequency: $$ f(t) = \frac{f_0 f_1 T}{(f_0 - f_1)t + f_1T} $$ Phase: $$ \phi(t) = \phi_0 + 2\pi \int_0^t f(\tau)d\tau = \phi_0 + 2\pi \frac{-f_0f_1 T}{f_1 - f_0}\ln(1 - \frac{f_1-f_0}{f_1 T}t) $$ time-domain: $$ x(t) = \sin{[\phi_0 + 2\pi \frac{-f_0f_1 T}{f_1 - f_0}\ln(1 - \frac{f_1-f_0}{f_1 T}t)]} $$