#math/calculus # what it is [Power series - Wikipedia](https://en.wikipedia.org/wiki/Power_series) ## power series #card/reverse it's actually a type of (simpler) [[taylor]] series. weird but true $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\ldots$ ## mclaurin $\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ # 3 possibilities for the value of x 1. $x=a$ [[Ratio test]] gives $\infty$ 2. $(-\infty,\infty)$, [[Ratio test]] $= 0$ 3. find $R>0$ (radius of convergence) where $|x-a|