--- title: "bst-operations" aliases: binary search tree operations, bst operations tags: - cosc201 --- # Search operation We want to search in a BST for a key `k` returning `true` if it is found and `false` if it is not ``` def search(k) n <- root while n ≠ nil do if n.key = k then return true else if n.key < k then n <- n.r else n <- n.l end if end while return false ``` Its naturally recursive Method `search(k)` calls `search(k, root)` wher the two-parameter version `search(k, n)` is defined by: ``` def search(k, root) if n = nil then return false else if n.key = k then return true else if n.key < k then return search(k, n.right) else return search(k, n.left) endif ``` Cost of search is at most the length of the longest branch. So we want to keep the trees short and "bushy" # Add Operation We want ot add a key `k` to a BST returning `true` if added or `false` if already present. This is similar to search: ``` def add(k) p <- nil, c <- root while n ≠ nil do p <- c if p.key = k then return false else if n.key < k then c <- p.r else c <- p.l end if end while make child node of p with value k return true ``` To make a child: Make sure this is really what we want to do: - k is not the key of p - the pos where this node will be added is currently nil ``` def makeChild(p, k) c <- new(k), c.p <- p if p.key < k then p.r <- c else p.l <- c end if ``` # Remove operation If the node to delete is a leaf, we can simply make it nil. If the node has only one child, we simply make the nodes child the child of the nodes parent If the node has two children, we replace it with its *successor* (the leftmost descendant of its right child) ``` java private void delete(Node n) { if (n == root) { deleteRoot(); return; } if (n.left == null) { addLink(n.parent, n.right, linkType(n.parent, n)); return; } if (n.right == null) { addLink(n.parent, n.left, linkType(n.parent, n)); return; } Node sn = successor(n); String s = sn.key; delete(sn); n.key = s; } ``` # Traversal Visit each node in the tree once. So we need to visit n, all the nodes in L, and all the nodes in R. We can do this in three different ways preorder - visit n - traverse L - traverse R Inorder. - traverse L - visit n - traverse R Creating an BST from an array using the add operation then doing an inorder traversal is effectively a [quicksort](notes/quicksort) postorder - traverse L - traverse R - visit n