From bef0ba447079753a862774e607fa789bdabb97ca Mon Sep 17 00:00:00 2001 From: PinkR1ver <3180102330@zju.edu.cn> Date: Tue, 21 May 2024 09:51:09 +0800 Subject: [PATCH] delete this code --- .../k-means/application/color8bit_style.py | 109 ------------------ 1 file changed, 109 deletions(-) delete mode 100644 content/computer_sci/deep_learning_and_machine_learning/clustering/k-means/application/color8bit_style.py diff --git a/content/computer_sci/deep_learning_and_machine_learning/clustering/k-means/application/color8bit_style.py b/content/computer_sci/deep_learning_and_machine_learning/clustering/k-means/application/color8bit_style.py deleted file mode 100644 index ab59bf891..000000000 --- a/content/computer_sci/deep_learning_and_machine_learning/clustering/k-means/application/color8bit_style.py +++ /dev/null @@ -1,109 +0,0 @@ -import cv2 -import numpy as np -import matplotlib.pyplot as plt -from tkinter import Tk, filedialog -from mpl_toolkits.mplot3d import Axes3D -from sklearn.cluster import KMeans - - -# Create a Tkinter root window -root = Tk() -root.withdraw() - -# Open a file explorer dialog to select an image file -file_path = filedialog.askopenfilename() - -# Read the selected image using cv2 -image = cv2.imread(file_path) - -# Convert the image to RGB color space -image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) - -# Get the dimensions of the image -height, width, _ = image_rgb.shape - -# Reshape the image to a 2D array of pixels, one is pixel number, one is pixel channel -pixels = image_rgb.reshape((height * width, 3)) - -# Create an empty dataset -dataset = [] - -# Iterate over each pixel and store the RGB values as a vector in the dataset -for pixel in pixels: - dataset.append(pixel) - -# Convert the dataset to a NumPy array -dataset = np.array(dataset) - -# Get the RGB values from the dataset -red = dataset[:, 0] -green = dataset[:, 1] -blue = dataset[:, 2] - - - -# plot show -''' -# Plot the histograms -plt.figure(figsize=(10, 6)) -plt.hist(red, bins=256, color='red', alpha=0.5, label='Red') -plt.hist(green, bins=256, color='green', alpha=0.5, label='Green') -plt.hist(blue, bins=256, color='blue', alpha=0.5, label='Blue') -plt.title('RGB Value Histogram') -plt.xlabel('RGB Value') -plt.ylabel('Frequency') -plt.legend() -plt.show() - - -# Plot the 3D scatter graph -fig = plt.figure(figsize=(10, 8)) -ax = fig.add_subplot(111, projection='3d') -ax.scatter(red, green, blue, c='#000000', s=1) -ax.set_xlabel('Red') -ax.set_ylabel('Green') -ax.set_zlabel('Blue') -ax.set_title('RGB Scatter Plot') -plt.show() -''' - - -# Perform k-means clustering -num_clusters = 3 # Specify the desired number of clusters -kmeans = KMeans(n_clusters=num_clusters, n_init='auto', random_state=42) -labels = kmeans.fit_predict(dataset) - - -# Show K-means Clustering result -''' -# Plot the scatter plot for each iteration of the k-means algorithm -fig = plt.figure(figsize=(10, 8)) -ax = fig.add_subplot(111, projection='3d') - -for i in range(num_clusters): - cluster_points = dataset[labels == i] - ax.scatter(cluster_points[:, 0], cluster_points[:, 1], cluster_points[:, 2], s=1) - -ax.set_xlabel('Red') -ax.set_ylabel('Green') -ax.set_zlabel('Blue') -ax.set_title('RGB Scatter Plot - K-Means Clustering') -plt.show() -''' - -center_values = kmeans.cluster_centers_.astype(int) - -for i in range(num_clusters): - dataset[labels == i] = center_values[i] - - -# Reshape the pixels array back into an image with the original dimensions and convert it to BGR color space -reshaped_image = dataset.reshape((height, width, 3)) -reshaped_image_bgr = cv2.cvtColor(reshaped_image.astype(np.uint8), cv2.COLOR_RGB2BGR) - -# Display the image using matplotlib -plt.imshow(reshaped_image) -plt.show() - -# Opencv store image -cv2.imwrite('./color8bit_style.jpg', reshaped_image_bgr)