Change folder location and add note

This commit is contained in:
PinkR1ver 2024-04-30 10:50:29 +08:00
parent b5348e0107
commit 9285ecffd2
114 changed files with 183 additions and 141 deletions

View File

@ -0,0 +1,7 @@
---
title: 科研计划 5月 - 7月
tags:
- plan
date: 2024-04-29
---

View File

@ -20,7 +20,7 @@ date: 2024-02-28
* [Physics](physics/physics_MOC.md)
* [Signal Processing](signal_processing/signal_processing_MOC.md)
* [Signal Processing](signal/signal_processing/signal_processing_MOC.md)
* [Data Science](data_sci/data_sci_MOC.md)

Binary file not shown.

After

Width:  |  Height:  |  Size: 124 KiB

View File

@ -0,0 +1,26 @@
---
title: What's Multi-Thread and Multi-Process Coding
tags:
- multi-code
- advanced
- code-design
date: 2024-04-26
---
# Introduction
## Thread vs. Process
### Overview
![](computer_sci/multiThread_and_multiProcess/attachments/Pasted%20image%2020240426171635.png)
### Process
# Reference
* https://ycc.idv.tw/multithread-multiprocess-gil.html
* [https://www.youtube.com/watch?v=4rLW7zg21gI⭐⭐⭐](https://www.youtube.com/watch?v=4rLW7zg21gI)

View File

@ -56,7 +56,7 @@ Diodes:
In this article, [Circularly Polarized Ultra-Wideband Radar System for Vital Signs Monitoring](https://ieeexplore.ieee.org/document/6491501), it uses AD9959 DDS to control UWB pulse repetition frequency (PRF). This DDS has the capability to generate sinusoids up to 250MHz at 0.1-Hz frequency tuning resolution. The DDS has four channels, one for transmitting pulse, one for storing reference pulse from receiver.
The outputs from the DDS, the sinusoids will be amplified by [op-amps](signal_processing/device_and_components/op_amp.md)(Texas Instruments Incorporated OPA699, in this article). After amplifying, the signal will be fed to [step recovery diode](signal_processing/device_and_components/SRD.md)(SRD).
The outputs from the DDS, the sinusoids will be amplified by [op-amps](signal/signal_processing/device_and_components/op_amp.md)(Texas Instruments Incorporated OPA699, in this article). After amplifying, the signal will be fed to [step recovery diode](signal/signal_processing/device_and_components/SRD.md)(SRD).
The **cascaded shunt mode SRD** with **decreasing lifetime method** of pulse generation produces high amplitude pulses of 3 $V_{p-p}$ at low PRFs (megahertz range), thus the pulse generator can directly drive the antenna subsystem saving the need for expensive broadband power amplifiers

View File

@ -56,7 +56,7 @@ Diodes:
In this article, [Circularly Polarized Ultra-Wideband Radar System for Vital Signs Monitoring](https://ieeexplore.ieee.org/document/6491501), it uses AD9959 DDS to control UWB pulse repetition frequency (PRF). This DDS has the capability to generate sinusoids up to 250MHz at 0.1-Hz frequency tuning resolution. The DDS has four channels, one for transmitting pulse, one for storing reference pulse from receiver.
The outputs from the DDS, the sinusoids will be amplified by [op-amps](signal_processing/device_and_components/op_amp.md)(Texas Instruments Incorporated OPA699, in this article). After amplifying, the signal will be fed to [step recovery diode](signal_processing/device_and_components/SRD.md)(SRD).
The outputs from the DDS, the sinusoids will be amplified by [op-amps](signal/signal_processing/device_and_components/op_amp.md)(Texas Instruments Incorporated OPA699, in this article). After amplifying, the signal will be fed to [step recovery diode](signal/signal_processing/device_and_components/SRD.md)(SRD).
The **cascaded shunt mode SRD** with **decreasing lifetime method** of pulse generation produces high amplitude pulses of 3 $V_{p-p}$ at low PRFs (megahertz range), thus the pulse generator can directly drive the antenna subsystem saving the need for expensive broadband power amplifiers

View File

@ -20,7 +20,7 @@ $$
H(\mu)(t) = \frac{1}{\pi} \text{p.v.} \int_{\infty}^{\infty} \frac{\mu(t)}{t-\tau}d\tau
$$
![](signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102150350.png)
![](signal/signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102150350.png)
```MATLAB
analytical = hilbert(signal)

View File

@ -0,0 +1,9 @@
---
title: Frequency Mixer
tags:
- hardware
- basic
- ciruit
- ciruit-componets
date: 2024-04-28
---

View File

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 52 KiB

View File

Before

Width:  |  Height:  |  Size: 41 KiB

After

Width:  |  Height:  |  Size: 41 KiB

View File

Before

Width:  |  Height:  |  Size: 66 KiB

After

Width:  |  Height:  |  Size: 66 KiB

View File

@ -20,11 +20,11 @@ EMD is similar to Fourier Transform (FT). FT assumes our signal is periodic and
## Overview
![](signal_processing/algorithm/EMD/attachments/Pasted%20image%2020240417160805.png)
![](signal/signal_processing/algorithm/EMD/attachments/Pasted%20image%2020240417160805.png)
## Flow Chart
![](signal_processing/algorithm/EMD/attachments/Pasted%20image%2020240417160534.png)
![](signal/signal_processing/algorithm/EMD/attachments/Pasted%20image%2020240417160534.png)
## Step by Step
@ -47,7 +47,7 @@ Input $x(t)$,
* Residuum signal is just a constant, monotonic, or just have 1 extremum
![](signal_processing/algorithm/EMD/attachments/Pasted%20image%2020240417160436.png)
![](signal/signal_processing/algorithm/EMD/attachments/Pasted%20image%2020240417160436.png)
## Hilbert Spectral Analysis (HSA)
@ -56,11 +56,11 @@ Input $x(t)$,
To see:
[Instantaneous Frequency⭐](signal_processing/basic_knowledge/instantaneous_frequency.md)
[Instantaneous Frequency⭐](signal/signal_processing/basic_knowledge/instantaneous_frequency.md)
### HSA after EMD
![](signal_processing/algorithm/EMD/attachments/2d8bbe7b82ba09ec5220d81af8a5c22.jpg)
![](signal/signal_processing/algorithm/EMD/attachments/2d8bbe7b82ba09ec5220d81af8a5c22.jpg)
得到这些IMF之后我们的信号$x(t)$可以表达为,

View File

@ -11,25 +11,25 @@ date: 2024-04-23
# Intro
集合经验模态分解Ensemble Empirical Mode Decomposition, EEMD是一种改进的[EMD](signal_processing/algorithm/EMD/basic.md)方法它通过引入白噪声来解决EMD中的**模态混叠问题**。
集合经验模态分解Ensemble Empirical Mode Decomposition, EEMD是一种改进的[EMD](signal/signal_processing/algorithm/EMD/basic.md)方法它通过引入白噪声来解决EMD中的**模态混叠问题**。
模态混叠是指在分解过程中,不同时间尺度的信号成分错误地混合在一起,导致分解结果不准确。
![](signal_processing/algorithm/EMD/attachments/Pasted%20image%2020240423162631.png)
![](signal/signal_processing/algorithm/EMD/attachments/Pasted%20image%2020240423162631.png)
上述figure就是一个很好的例子连续低频正弦信号上叠加了间歇性高频震动的调制信号因为间歇性高频震动的调制信号干扰了Maximum点的选择使得局部极值在很短的时间间隔发生多次跳变进而使得我们的IMF并不准确不同时间尺度的信号成分错误地混合在一起。
以下我们也通过我们写的EMD做了示范
![](signal_processing/algorithm/EMD/attachments/Figure_1.png)
![](signal/signal_processing/algorithm/EMD/attachments/Figure_1.png)
![](signal_processing/algorithm/EMD/attachments/Figure_3.png)
![](signal/signal_processing/algorithm/EMD/attachments/Figure_3.png)
![](signal_processing/algorithm/EMD/attachments/Figure_2.png)
![](signal/signal_processing/algorithm/EMD/attachments/Figure_2.png)
很明显在IMF1发生了混叠
@ -190,11 +190,11 @@ def EEMD(signal, max_imf = 10, tolerance = 0.01, iterations = 10):
通过EEMD结果如下
![](signal_processing/algorithm/EMD/attachments/Figure_1%201.png)
![](signal/signal_processing/algorithm/EMD/attachments/Figure_1%201.png)
![](signal_processing/algorithm/EMD/attachments/Figure_2%201.png)
![](signal/signal_processing/algorithm/EMD/attachments/Figure_2%201.png)
![](signal_processing/algorithm/EMD/attachments/Figure_3%201.png)
![](signal/signal_processing/algorithm/EMD/attachments/Figure_3%201.png)
EEMD的前几个IMF将高频噪声和白噪声过滤在IMF7显示了信号原有的模态
# Reference

View File

@ -0,0 +1,8 @@
---
title: Power spectral density estimation
tags:
- signal-processing
- statistics
date: 2023-11-30
---
[Power spectral density estimation](signal/signal_processing/basic_knowledge/concept/Spectral_density.md)(PSDE, or SDE),功率谱估计是随机信号处理的重要研究内容之一

View File

@ -31,9 +31,9 @@ cov(X, Y) & = \frac{\sum(x-\overline{x})(y-\overline{y})}{n-1} \\
\end{split}
\end{equation}
$$
![](signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171344.png)
![](signal/signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171344.png)
![](signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171351.png)
![](signal/signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171351.png)
Covariance is hard to **interpret** because it is sensitive to the **scale**
@ -43,7 +43,7 @@ To solve the scale effect, here's the correlation:
## Correlation
![](signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171510.png)
![](signal/signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171510.png)
We can quantify the strength of the relationship with correlation (**Pearsons correlation**)
@ -61,13 +61,13 @@ $corr(X, Y)$ is between -1 to 1
> NOTE: When were talking about correlation, were only talking about using **straight line**
![](signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171736.png)
![](signal/signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171736.png)
For correlation, we usually use **p-value** to **quantify the confidence** of the straight line relationship. **The more samll p-value, the more confident we say they are straight line relationship**; Like the figure:
![](signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171834.png)
![](signal/signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171834.png)
![](signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171855.png)
![](signal/signal_processing/algorithm/advanced_statistic/autocorrelation/attachments/Pasted%20image%2020240415171855.png)
About P-value, you have better know what's [significance test](math/Statistics/significance_test/whats_the_significance_test.md)
@ -221,7 +221,7 @@ $$
# Application
* [Period Detection by Autocorrelation](signal_processing/algorithm/advanced_statistic/autocorrelation/period_detection.md)
* [Period Detection by Autocorrelation](signal/signal_processing/algorithm/advanced_statistic/autocorrelation/period_detection.md)
# Reference
* https://pinkr1ver.notion.site/Autocorrelation-Analysis-Power-Spectral-Density-330755770347472989062c6b31f18a21?pvs=4

View File

@ -10,4 +10,4 @@ date: 2024-03-18
# Method
* [DTW(Dynamic Time Warping)](computer_sci/deep_learning_and_machine_learning/Trick/DTW.md)
* [Manhattan Distance](signal_processing/algorithm/curve_similarity/manhattan_distance.md)
* [Manhattan Distance](signal/signal_processing/algorithm/curve_similarity/manhattan_distance.md)

View File

@ -9,7 +9,7 @@ date: 2024-01-12
# Introduction
![](signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240103160713.png)
![](signal/signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240103160713.png)
# Envelope Explanation
## Envelope and Fine Structure
@ -36,7 +36,7 @@ date: 2024-01-12
早期关于包络和瞬时相位的研究都是基于笛卡尔坐标系x-y
![](signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102155308.png)
![](signal/signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102155308.png)
有关系:
$$
@ -73,7 +73,7 @@ $$
H(\mu)(t) = \frac{1}{\pi} \text{p.v.} \int_{\infty}^{\infty} \frac{\mu(t)}{t-\tau}d\tau
$$
![](signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102150350.png)
![](signal/signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102150350.png)
The Hilbert transform is given by the [Cauchy principal value](math/real_analysis/cauchy_principal_value.md) of the convolution with the function $1/(\pi t)$.

View File

@ -54,7 +54,7 @@ T_{n+1}(x) & = 2xT_n(x)-T_{n-1}(x)
\end{split}
\end{equation}
$$
![](signal_processing/algorithm/filter/attachments/Pasted%20image%2020240108161455.png)
![](signal/signal_processing/algorithm/filter/attachments/Pasted%20image%2020240108161455.png)
#### 第二类切比雪夫多项式
$$
@ -67,7 +67,7 @@ U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)
\end{equation}
$$
![](signal_processing/algorithm/filter/attachments/Pasted%20image%2020240108161800.png)
![](signal/signal_processing/algorithm/filter/attachments/Pasted%20image%2020240108161800.png)
### 正交性

View File

@ -7,13 +7,13 @@ date: 2023-11-30
---
# Almost Fourier Transform
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152200.png)
![](signal/signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152200.png)
It is important to see there are 2 different frequencies here:
1. The frequency of the original signal
2. The frequency with which the **little rotating vector winds around the circle**
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152234.png)
![](signal/signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152234.png)
Different patterns appear as we wind up this graph, but it is clear that the x-coordinate for the center of mass is important when the winding frequency is 3; The same number as the original signal
@ -28,7 +28,7 @@ $$
因为在Fourier transform中convention way是顺时针旋转所以使用$e^{-2\pi ift}$那如何衡量center of mass呢如下图
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152357.png)
![](signal/signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152357.png)
$$
@ -43,7 +43,7 @@ $$
这个就是Almost Fourier Transform, 但是实际情况上Fourier transform倾向于得到scaled center mass越长的time旋转越多圈其Fourier transform也会成倍放大
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152720.png)
![](signal/signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152720.png)
# Fourier Transform (FT)
@ -118,7 +118,7 @@ $$
## 复数形式推导
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919153109.png)
![](signal/signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919153109.png)
## 三角函数推导
@ -184,7 +184,7 @@ $$
**For $X[k]$, it means a $\cos$ wine like this:**
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919153401.png)
![](signal/signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919153401.png)
# Fast Fourier transform(FFT)

View File

@ -33,7 +33,7 @@ $$
平稳信号具有Ergodicity即各态历经即多样本**集合平均**和单一样本**时间平均**相同
![](signal_processing/basic_knowledge/concept/attachments/Pasted%20image%2020240417144416.png)
![](signal/signal_processing/basic_knowledge/concept/attachments/Pasted%20image%2020240417144416.png)
$$
\mu_x=E\{x(n)\}=\lim_{M\rightarrow\infty}\frac{1}{2M+1}\sum_{n=-M}^Mx(n)

View File

@ -70,7 +70,7 @@ $$
对于拥有Ergodicity的信号可以用时间平均代替集合平均
![](signal_processing/basic_knowledge/attachments/Screenshot_from_2022-10-18_10-53-17.png)
![](signal/signal_processing/basic_knowledge/attachments/Screenshot_from_2022-10-18_10-53-17.png)
$$

View File

@ -47,7 +47,7 @@ $$
最后一个等式来自无穷几何级数,而等式仅在 $|0.5z^{1}| < 1$ 时成立可以以 z 为变量写成 $|z| > 0.5$。因此,收敛域为 $|z| > 0.5$。在这种情况下,收敛域为复平面“挖掉”原点为中心的半径为 0.5 的圆盘。
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020240115112204.png)
![](signal/signal_processing/basic_knowledge/attachments/Pasted%20image%2020240115112204.png)

View File

@ -28,4 +28,4 @@ date: 2023-11-02
总之阶跃恢复二极管SRD是一种特殊的二极管它在高频、脉冲和微波应用中具有广泛的应用因为它可以产生非常快速的电流和电压变化适用于各种电子电路中的特殊应用。
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231102154725.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231102154725.png)

View File

@ -18,7 +18,7 @@ About what is VNA: [VNA Research](research_career/UWB_about/report/VNA_research.
1. Reference Calibration
基准校准是通过标准的开路、短路和负载器Load标准件来进行校准因为这些标准件已经知道它们的[S参数](signal_processing/basic_knowledge/concept/scattering_parameters.md)响应,因此可以用来校准
基准校准是通过标准的开路、短路和负载器Load标准件来进行校准因为这些标准件已经知道它们的[S参数](signal/signal_processing/basic_knowledge/concept/scattering_parameters.md)响应,因此可以用来校准
在LiteVNA产品中
* 中间没有内针的为开路校准件
@ -49,24 +49,24 @@ About what is VNA: [VNA Research](research_career/UWB_about/report/VNA_research.
### Verify Calibration
可以使用[Smith Graph](signal_processing/basic_knowledge/concept/smith_graph.md)来验证我们的Calibration
可以使用[Smith Graph](signal/signal_processing/basic_knowledge/concept/smith_graph.md)来验证我们的Calibration
开路状态下Smith Graph的标记点应该在电阻线的最右端表明阻抗无限大且表现出纯电阻性
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231007162754.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231007162754.png)
PORT1链接短路校准件查看史密斯图标记点应该在史密斯图上电阻线的最左端(阻抗为0并且表现纯电阻性)。
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231007162817.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231007162817.png)
PORT1链接50欧姆校准件查看史密斯图标记点应该在史密斯图上电阻线的中心(阻抗为50欧姆并且表现纯电阻性)。
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231007162826.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231007162826.png)
链接一根可以确认阻抗与谐振都正常的天线(可以把一根天线定位对照组并妥善保管),可以通过拨轮移动标记点至[驻波比](signal_processing/basic_knowledge/concept/SWR.md)最低点并同步观察该频率在史密斯图上的点是否在正中心或者无限接近中心。同时可以看屏幕最上面的参数如图显示我的这条对照天线最好的驻波比为1.021此时对应的频率2.455GHz史密斯图中阻抗为50.72Ω+j748mΩ
链接一根可以确认阻抗与谐振都正常的天线(可以把一根天线定位对照组并妥善保管),可以通过拨轮移动标记点至[驻波比](signal/signal_processing/basic_knowledge/concept/SWR.md)最低点并同步观察该频率在史密斯图上的点是否在正中心或者无限接近中心。同时可以看屏幕最上面的参数如图显示我的这条对照天线最好的驻波比为1.021此时对应的频率2.455GHz史密斯图中阻抗为50.72Ω+j748mΩ
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231007162914.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231007162914.png)
###

View File

@ -8,7 +8,7 @@ date: 2023-12-05
---
# Structure
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204110242.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204110242.png)
* Conductor is located at the center of the cable
* Other layers is to protect
@ -79,7 +79,7 @@ date: 2023-12-05
Chinese translation: 实心导体和绞合导体
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204112611.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204112611.png)
<center><strong>Solid Conductor is in left, Stranded Conductor is in right</strong></center>
@ -100,7 +100,7 @@ Chinese translation: 实心导体和绞合导体
> [!hint]
> 根据前哥说的趋肤效应([Skin effect](https://zh.wikipedia.org/wiki/%E9%9B%86%E8%86%9A%E6%95%88%E6%87%89)),高频信号的电子喜欢在金属表面移动,因此实心导体可能已经被淘汰了。
>
> [skin effect note](signal_processing/device_and_components/cable/skin_effect.md)
> [skin effect note](signal/signal_processing/device_and_components/cable/skin_effect.md)
### Stranded Constructions
@ -111,9 +111,9 @@ Chinese translation: 实心导体和绞合导体
#### Bunched Stranded Conductor
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204114304.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204114304.png)
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204114312.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204114312.png)
Bunched strands are simply gathered together without any specific arrangement.
@ -121,7 +121,7 @@ Bunched strands are simply gathered together without any specific arrangement.
#### Concentric Lay Stranded Conductor
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204130617.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204130617.png)
Concentric stranding (同心绞合)
@ -146,17 +146,17 @@ In uni-lay stranding, every layer is twisted in the same direction.
In a rope lay construction, the stranded conductors or strands are arranged in a spiral fashion to form a rope-like structure. This is a departure from the traditional uni-lay or multi-lay construction.
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204153959.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204153959.png)
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204154015.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204154015.png)
# Cable Structure
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204160536.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204160536.png)
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204165012.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204165012.png)
1. **Standard Conductor标准导体**
@ -238,11 +238,11 @@ In a rope lay construction, the stranded conductors or strands are arranged in a
# Letters on Cable
![](signal_processing/device_and_components/attachments/Pasted%20image%2020231204160640.png)
![](signal/signal_processing/device_and_components/attachments/Pasted%20image%2020231204160640.png)
## Size
* AWG - [American Wire Gauge](signal_processing/device_and_components/cable/AWG.md)
* AWG - [American Wire Gauge](signal/signal_processing/device_and_components/cable/AWG.md)
* $mm^2$ - Square millimeters
* MCM - Thousand Circular Mils
* KCMil - Thousand Circular Mils
@ -272,7 +272,7 @@ In a rope lay construction, the stranded conductors or strands are arranged in a
## Quality Control Certified
* [UL, TUV, ISO ... ...](signal_processing/device_and_components/quality_control_certified/qcc.md)
* [UL, TUV, ISO ... ...](signal/signal_processing/device_and_components/quality_control_certified/qcc.md)
# Cable Properties - Especially for RF circuit
@ -286,7 +286,7 @@ RF cables are quite different to audio cables. As in audio cables we can run cab
* Frequency you're currently trying to transmit
* The length of the cable
RF circuits need to consider impedance matching, and the most likely to fluctuate in impedance is the cable. So the antenna cable we used for our radio systems is usually **[coax cable](signal_processing/device_and_components/cable/coax_cable.md) with a nice BNC connector**.
RF circuits need to consider impedance matching, and the most likely to fluctuate in impedance is the cable. So the antenna cable we used for our radio systems is usually **[coax cable](signal/signal_processing/device_and_components/cable/coax_cable.md) with a nice BNC connector**.

View File

@ -8,10 +8,10 @@ date: 2023-12-05
---
![](signal_processing/device_and_components/cable/attachments/Pasted%20image%2020231205144443.png)
![](signal/signal_processing/device_and_components/cable/attachments/Pasted%20image%2020231205144443.png)
A coaxial cable as a transmission line consisting of an inner conducting wire of radius A and an outer conducting sheath of radius B. The space between the two conductors is filled with a dielectric. The fields are entirely contained internally, so coaxial cables are completely protected from outside interference. However, they are difficult to fabricate, [unbalanced](signal_processing/device_and_components/cable/coax_cable_imbalance.md) and lossy over long distances, so their use is constrained to close range applications.
A coaxial cable as a transmission line consisting of an inner conducting wire of radius A and an outer conducting sheath of radius B. The space between the two conductors is filled with a dielectric. The fields are entirely contained internally, so coaxial cables are completely protected from outside interference. However, they are difficult to fabricate, [unbalanced](signal/signal_processing/device_and_components/cable/coax_cable_imbalance.md) and lossy over long distances, so their use is constrained to close range applications.

Some files were not shown because too many files have changed in this diff Show More