signal processing part folder strucutre change

This commit is contained in:
PinkR1ver 2024-04-17 11:22:20 +08:00
parent abb6ec507a
commit 6a4afaf87e
24 changed files with 26 additions and 21 deletions

View File

@ -20,7 +20,7 @@ $$
H(\mu)(t) = \frac{1}{\pi} \text{p.v.} \int_{\infty}^{\infty} \frac{\mu(t)}{t-\tau}d\tau
$$
![](signal_processing/envelope/attachments/Pasted%20image%2020240102150350.png)
![](signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102150350.png)
```MATLAB
analytical = hilbert(signal)

View File

@ -10,4 +10,4 @@ date: 2024-03-18
# Method
* [DTW(Dynamic Time Warping)](computer_sci/deep_learning_and_machine_learning/Trick/DTW.md)
* [Manhattan Distance](signal_processing/curve_similarity/manhattan_distance.md)
* [Manhattan Distance](signal_processing/algorithm/curve_similarity/manhattan_distance.md)

View File

@ -9,7 +9,7 @@ date: 2024-01-12
# Introduction
![](signal_processing/envelope/attachments/Pasted%20image%2020240103160713.png)
![](signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240103160713.png)
# Envelope Explanation
## Envelope and Fine Structure
@ -36,7 +36,7 @@ date: 2024-01-12
早期关于包络和瞬时相位的研究都是基于笛卡尔坐标系x-y
![](signal_processing/envelope/attachments/Pasted%20image%2020240102155308.png)
![](signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102155308.png)
有关系:
$$
@ -73,7 +73,7 @@ $$
H(\mu)(t) = \frac{1}{\pi} \text{p.v.} \int_{\infty}^{\infty} \frac{\mu(t)}{t-\tau}d\tau
$$
![](signal_processing/envelope/attachments/Pasted%20image%2020240102150350.png)
![](signal_processing/algorithm/envelope/attachments/Pasted%20image%2020240102150350.png)
The Hilbert transform is given by the [Cauchy principal value](math/real_analysis/cauchy_principal_value.md) of the convolution with the function $1/(\pi t)$.

View File

@ -54,7 +54,7 @@ T_{n+1}(x) & = 2xT_n(x)-T_{n-1}(x)
\end{split}
\end{equation}
$$
![](signal_processing/filter/attachments/Pasted%20image%2020240108161455.png)
![](signal_processing/algorithm/filter/attachments/Pasted%20image%2020240108161455.png)
#### 第二类切比雪夫多项式
$$
@ -67,7 +67,7 @@ U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)
\end{equation}
$$
![](signal_processing/filter/attachments/Pasted%20image%2020240108161800.png)
![](signal_processing/algorithm/filter/attachments/Pasted%20image%2020240108161800.png)
### 正交性

View File

@ -7,13 +7,13 @@ date: 2023-11-30
---
# Almost Fourier Transform
![](signal_processing/attachments/Pasted%20image%2020230919152200.png)
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152200.png)
It is important to see there are 2 different frequencies here:
1. The frequency of the original signal
2. The frequency with which the **little rotating vector winds around the circle**
![](signal_processing/attachments/Pasted%20image%2020230919152234.png)
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152234.png)
Different patterns appear as we wind up this graph, but it is clear that the x-coordinate for the center of mass is important when the winding frequency is 3; The same number as the original signal
@ -28,7 +28,7 @@ $$
因为在Fourier transform中convention way是顺时针旋转所以使用$e^{-2\pi ift}$那如何衡量center of mass呢如下图
![](signal_processing/attachments/Pasted%20image%2020230919152357.png)
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152357.png)
$$
@ -43,7 +43,7 @@ $$
这个就是Almost Fourier Transform, 但是实际情况上Fourier transform倾向于得到scaled center mass越长的time旋转越多圈其Fourier transform也会成倍放大
![](signal_processing/attachments/Pasted%20image%2020230919152720.png)
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919152720.png)
# Fourier Transform (FT)
@ -118,7 +118,7 @@ $$
## 复数形式推导
![](signal_processing/attachments/Pasted%20image%2020230919153109.png)
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919153109.png)
## 三角函数推导
@ -184,7 +184,7 @@ $$
**For $X[k]$, it means a $\cos$ wine like this:**
![](signal_processing/attachments/Pasted%20image%2020230919153401.png)
![](signal_processing/basic_knowledge/attachments/Pasted%20image%2020230919153401.png)
# Fast Fourier transform(FFT)

View File

@ -70,7 +70,7 @@ $$
对于拥有Ergodicity的信号可以用时间平均代替集合平均
![](signal_processing/attachments/Screenshot_from_2022-10-18_10-53-17.png)
![](signal_processing/basic_knowledge/attachments/Screenshot_from_2022-10-18_10-53-17.png)
$$

View File

@ -3,7 +3,7 @@ title: Oscilloscope basic knowledge
tags:
- signal-processing
- devices
date: 2024-11-04
date: 2024-04-11
---
# Classification

View File

@ -9,7 +9,7 @@ date: 2024-03-18
* [Random Signal Basic](signal_processing/basic_knowledge/random_signal_basic.md)
* [Fourier Transform](signal_processing/basic_knowledge/FT/fourier_transform.md)
* [Power spectral density estimation](signal_processing/PSD_estimation/PSD_estimation.md)
* [Power spectral density estimation](signal_processing/algorithm/PSD_estimation/PSD_estimation.md)
* [FBW - Fractional Band Width](signal_processing/basic_knowledge/concept/FBW.md)
## Fourier Transform
@ -27,25 +27,30 @@ date: 2024-03-18
## Envelope
* [Hilbert Transform - Envelope](signal_processing/envelope/hilbert_transform.md)
* [Hilbert Transform - Envelope](signal_processing/algorithm/envelope/hilbert_transform.md)
## Curve similarity
* [Curve Similarity - MOC](signal_processing/curve_similarity/curve_similarity.md)
* [Curve Similarity - MOC](signal_processing/algorithm/curve_similarity/curve_similarity.md)
## Filter
* [Chebyshev Filter](signal_processing/filter/chebyshev_filter.md)
* [Chebyshev Filter](signal_processing/algorithm/filter/chebyshev_filter.md)
## Generating Impulse
* [Gaussian Impulse Generating](signal_processing/impulse_generating/gaussian_impulse.md)
* [Gaussian Impulse Generating](signal_processing/algorithm/impulse_generating/gaussian_impulse.md)
## Autocorrelation
* [Autocorrelation in Signal Processing](signal_processing/advanced_statistic/autocorrelation/autocorrelation.md)
* [Period Detection by Autocorrelation](signal_processing/advanced_statistic/autocorrelation/period_detection.md)
## Empirical Mode Decomposition
# Software
## CST MWS