Add note
@ -8,10 +8,14 @@ date: 2023-12-03
|
||||
|
||||
# Statistics
|
||||
|
||||
## Basic concept
|
||||
## Basic Concept
|
||||
|
||||
* [Quantile](math/Statistics/Basic/Quantile.md)
|
||||
|
||||
## Significance Test
|
||||
|
||||
* [Basic about significance test](math/Statistics/significance_test/whats_the_significance_test.md)
|
||||
|
||||
# Discrete mathematics
|
||||
|
||||
## Set theory
|
||||
|
||||
|
After Width: | Height: | Size: 860 KiB |
@ -0,0 +1,111 @@
|
||||
---
|
||||
title: What's the significance test
|
||||
tags:
|
||||
- advanced
|
||||
- statistics
|
||||
- math
|
||||
date: 2024-04-15
|
||||
---
|
||||
⭐⭐The significance test tells us **whether or not what we observe in the sample is expected to be true in the populatio**n, and can be conducted through a **hypothesis test**.⭐⭐
|
||||
|
||||
# Goal⭐
|
||||
|
||||
• The sample correlation coefficient ($r$) between x and y is known (can be computed using samples)
|
||||
• The population correlation coefficient ($\rho$) between x and y is unknown (because we only have sample data)
|
||||
• Goal: We want to make an inference about the value of $\rho$ based on $r$
|
||||
|
||||
|
||||
# Hypothesis Test
|
||||
|
||||
The hypothesis test will let us infer whether the value of the population correlation coefficient $\rho$ is close to 0 or significantly different from 0. We decide this based on the sample correlation coefficient $r$ and the sample size $n$
|
||||
|
||||
Situation:
|
||||
|
||||
• **$\rho$ close to 0**: means there is not a significant linear correlation between x and y in the population.
|
||||
• **$\rho$ significantly different from 0**: means there is a significant correlation between x and y in the population.
|
||||
|
||||
For hypothesis test, we have two types - the **null** and **alternative** hypotheses.
|
||||
|
||||
• The **alternative hypothesis** is always what we are trying to **prove**.
|
||||
• The **null hypothesis** is the hypothesis that we are trying to provide evidence **against**.
|
||||
|
||||
### Detailed Explaination
|
||||
|
||||
1. **零假设(Null Hypothesis)** - 通常表示为$H_0$。 零假设是一个默认的假设,它通常表示没有效应、没有差异或变量之间没有关系。换句话说,零假设通常提出了一个“无效果”的声明,比如两组数据的均值没有差异、两个变量之间没有相关性等。在假设检验中,研究者试图通过收集和分析数据来寻找拒绝零假设的证据。
|
||||
|
||||
例如,如果研究者想要检验两种药物对血压的影响是否有差异,零假设可能是“两种药物对降低血压的效果没有差异”。
|
||||
|
||||
2. **备择假设(Alternative Hypothesis)** - 通常表示为$H_1$或$H_a$。 备择假设与零假设相对立,它提出了一个“有效果”的声明,即存在效应、差异或关系。备择假设通常是研究者真正感兴趣的假设,它反映了研究者希望证明的效应或关系。
|
||||
|
||||
在上述药物对血压影响的例子中,备择假设可能是“两种药物对降低血压的效果存在差异”。
|
||||
|
||||
|
||||
### Classic Test Method
|
||||
|
||||
Here's some classic test method:
|
||||
|
||||
* **T-Test** (Student's T-Test)
|
||||
* **ANOVA** (Analysis of Variance)
|
||||
* **Mann-Whitney U Test** - MWU (Mann-Whitney U Test)
|
||||
* **Kruskal-Wallis H Test** - KW (Kruskal-Wallis H Test)
|
||||
* **Friedman Test** - FT (Friedman Test)
|
||||
* **ANCOVA** - ANCOVA (Analysis of Covariance)
|
||||
* **Pearson Correlation Coefficient** - PCC (Pearson Correlation Coefficient)
|
||||
* **Factor Analysis** - FA (Factor Analysis)
|
||||
* **Cluster Analysis** - CA (Cluster Analysis)
|
||||
* **Time Series Analysis** - TSA (Time Series Analysis)
|
||||
* ... ...
|
||||
|
||||
## T-test
|
||||
|
||||
Here we introduce a very classic test method, called T-test, also called Student’s T-test, which is an inferential statistic that allows to test an assumption applicable to a population, or simply, it allows to use sample data to generalize an assumption to an entire population.
|
||||
|
||||
|
||||
> [!info]
|
||||
> T检验是由威廉·戈塞特(William Sealy Gosset)在20世纪初提出的,他使用笔名“Student”发表了相关论文,因此这种检验有时也被称为“Student's t-test”。它通常用于样本量较小的情况
|
||||
### T-value
|
||||
|
||||
Equation:
|
||||
|
||||
$$
|
||||
t=\frac{r\times\sqrt{n-2}}{1-r^2}
|
||||
$$
|
||||
$$
|
||||
\text{n is the sample size, r is the correlation coefficient}
|
||||
$$
|
||||
|
||||
T值(t-value)是从T检验中得到的统计量,它是**样本均值差异与样本内变异性的比率**。T值越大,意味着样本均值之间的差异相对于样本内的变异性越大,这通常会导致更低的p值,从而增加了**拒绝零假设**(即两组均值没有差异)的证据。换句话说,T值越大,我们越有理由相信两组之间的均值差异是真实存在的,而不是由随机变异引起的。
|
||||
|
||||
T值的大小并不直接影响相关性的可重复性。然而,如果我们在讨论的是重复测量的均值差异,那么在某种程度上,较大的T值可能会使得研究者更有信心认为这种差异是可靠的,因为较大的T值意味着较小的p值,这可能**会使得研究结果在统计上更显著**。但是,这并**不意味着相关性的可重复性得到了提高**,因为**相关性的可重复性涉及到的是变量之间关系的一致性,而不是均值差异的显著性。**
|
||||
|
||||
### P-value
|
||||
|
||||

|
||||
|
||||
|
||||
P值(P-value),全称为概率值(Probability value),是统计假设检验中的一个重要概念。**它用于帮助我们决定是否拒绝零假设**(null hypothesis)。**P值衡量的是,在零假设为真的情况下,观察到的统计量(如T值、Z值等)或更极端情况出现的概率**。
|
||||
|
||||
在进行假设检验时,我们通常设定一个显著性水平(alpha level),常用的值有0.05、0.01等。这个显著性水平是我们事先决定的拒绝零假设的阈值。如果计算出的P值小于这个显著性水平,我们就有理由拒绝零假设,认为观察到的效应或差异是统计上显著的,即不太可能是由随机变异引起的。
|
||||
|
||||
例如,假设我们进行一个T检验,零假设是两组数据的均值没有差异。如果我们得到的P值为0.03,而我们设定的显著性水平为0.05,那么P值小于0.05,我们就拒绝零假设,认为两组数据的均值存在显著差异。
|
||||
|
||||
需要注意的是,**P值并不直接告诉我们零假设是真还是假,也不提供效应大小的信息**。它只是表示**在零假设成立的前提下,得到当前统计结果或更极端结果的概率**。此外,P值也不是与发现效应的大小相关联的概率。**一个很小的P值**并不意味着效应很大,它**只意味着结果不太可能是偶然发生的**。
|
||||
|
||||
在使用P值时,应该**避免一些常见的误解和滥用**,如将P值解释为支持备择假设的概率,或者将P值与研究的结论重要性等同起来。正确理解和解释P值对于统计分析的有效性和科学性的结论至关重要。
|
||||
|
||||
# Conclusion
|
||||
|
||||
1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中小概率事件事实上发生了。那只能认为该事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。
|
||||
|
||||
2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。
|
||||
|
||||
3、检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。
|
||||
|
||||
4、在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。大于这个标准时,拒绝原假设的证据不足,认为样本数据不足以表明真实差异存在。
|
||||
|
||||
5、检验的操作可以用稍许简便一点的作法:根据所提出的显著水平查表得到相应的值,称作临界值,直接用检验统计量的观察值与临界值作比较,观察值落在临界值所划定的尾部内,便拒绝原假设;观察值落在临界值所划定的尾部之外,则认为拒绝原假设的证据不足。
|
||||
|
||||
|
||||
# Reference
|
||||
|
||||
* https://kimi.moonshot.cn/chat
|
||||
|
After Width: | Height: | Size: 470 KiB |
|
After Width: | Height: | Size: 470 KiB |
|
After Width: | Height: | Size: 616 KiB |
|
After Width: | Height: | Size: 804 KiB |
|
After Width: | Height: | Size: 740 KiB |
|
After Width: | Height: | Size: 779 KiB |
@ -0,0 +1,223 @@
|
||||
---
|
||||
title: Autocorrelation in Signal Processing
|
||||
tags:
|
||||
- advanced
|
||||
- signal
|
||||
- statistics
|
||||
- signal-processing
|
||||
date: 2024-04-15
|
||||
---
|
||||
# Background
|
||||
## Covariance
|
||||
|
||||
|
||||
Covariance can classify three types of relationships between two random variables.
|
||||
|
||||
1. **Relationships with positive trends**
|
||||
2. **Relationships with negative trends**
|
||||
3. **Times when there is no relationship because there is no trend**
|
||||
|
||||
Also very importantly, covariance is a **computational stepping stone** to more interesting thing, like **correlation.**
|
||||
|
||||
|
||||
Here's the equation to calculate the covariance:
|
||||
|
||||
$$
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
cov(X, Y) & = E[(X-E[X])(Y - E[Y])] \\
|
||||
& = E[XY] - E[X]E[Y] \\
|
||||
cov(X, Y) & = \frac{\sum(x-\overline{x})(y-\overline{y})}{n-1} \\
|
||||
\end{split}
|
||||
\end{equation}
|
||||
$$
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
Covariance is hard to **interpret** because it is sensitive to the **scale**
|
||||
|
||||
|
||||
To solve the scale effect, here's the correlation:
|
||||
|
||||
## Correlation
|
||||
|
||||

|
||||
|
||||
|
||||
We can quantify the strength of the relationship with correlation (**Pearson’s correlation**)
|
||||
|
||||
$$
|
||||
r= corr(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)}\sqrt{var(Y)}}
|
||||
$$
|
||||
|
||||
$corr(X, Y)$ is between -1 to 1
|
||||
|
||||
|
||||
> [!tip]
|
||||
> Correlation can still be 1 even we have so little data, even only 2 random dots In general, more data, **the more confidence we believe the correlation**
|
||||
>
|
||||
> NOTE: When we’re talking about correlation, we’re only talking about using **straight line**
|
||||
|
||||
|
||||

|
||||
|
||||
For correlation, we usually use **p-value** to **quantify the confidence** of the straight line relationship. **The more samll p-value, the more confident we say they are straight line relationship**; Like the figure:
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
About P-value, you have better know what's [significance test](math/Statistics/significance_test/whats_the_significance_test.md)
|
||||
|
||||
|
||||
## Random Signal
|
||||
|
||||
- 随机信号(Random Signals)在任何时间的取值都是不能先验确定的随机变量
|
||||
- 虽然随机信号的取值不能先验确定,但这些取值却服从某种统计规律,换言之,随机信号或过程可以用概率分布特性统计地描述
|
||||
- 随机变量 $X=x(t)$,离散状态为随机序列 $x(n)$,$x_k(n)$是随机序列$x(n)$的一个样本序列
|
||||
|
||||
### Statistics for Random Signal
|
||||
|
||||
$$
|
||||
\mu_x(n)=E\{x(n)\}=\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{k=1}^N x_k(n)
|
||||
$$
|
||||
$$
|
||||
E\{x^2(n)\}=\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{k=1}^N x^2_k(n)
|
||||
$$
|
||||
$$
|
||||
\sigma^2_x(n)=E\{[x(n)-\mu_x(n)]^2\}=\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{k=1}^N[x_k(n)-\mu_x(n)]^2
|
||||
$$
|
||||
$$
|
||||
\sigma^2_x(n)=E\{x^2(n)\}-\mu^2_x(n)
|
||||
$$
|
||||
$$
|
||||
R_x(n_1,n_2)=E\{x(n_1)x(n_2)\}=\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{k=1}^N x_k(n_1)x_k(n_2)
|
||||
$$
|
||||
|
||||
# Autocorrelation
|
||||
|
||||
## Equation
|
||||
|
||||
|
||||
$$
|
||||
R_x(n_1,n_2) = E\{x(n_1)x(n_2)\}=\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{k=1}^{N}x_k(n_1)x_k(n_2)
|
||||
$$
|
||||
若令时移m=n_2-n_1,有:
|
||||
|
||||
$$
|
||||
R_x(n,n+m) = E\{x(n)x(n+m)\}=\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{k=1}^{N}x_k(n)x_k(n+m)
|
||||
$$
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
1. **Symmetry**
|
||||
|
||||
$$
|
||||
R_x(m)=R_x(-m)
|
||||
$$
|
||||
|
||||
2. **Maximum at zero**
|
||||
|
||||
$$
|
||||
R_x(0) \geq |R_x(m)|
|
||||
$$
|
||||
|
||||
$$
|
||||
R_x(0)=E\{x(n)x(n)\}=E\{x^2(n)\} \geq 0
|
||||
$$
|
||||
|
||||
$$
|
||||
E\{[x(n)\pm x(n+m)]^2\} \geq 0
|
||||
$$
|
||||
|
||||
So,
|
||||
|
||||
$$
|
||||
E\{x^2(n)\} \pm 2E\{x(n)x(m+n)\} + E\{x^2(m+n)\} \geq 0
|
||||
$$
|
||||
|
||||
Depending on stable signal,
|
||||
|
||||
$$
|
||||
E\{x^2(n)\} = E\{x^2(m+n)\} = R_x(0)
|
||||
$$
|
||||
|
||||
So,
|
||||
|
||||
$$
|
||||
2R_x(0)\pm2R_x(m) \geq 0
|
||||
$$
|
||||
|
||||
$$
|
||||
R_x(0) \geq |R_x(m)|
|
||||
$$
|
||||
|
||||
3. **Relation between Autocovariance and Autocorrelation**
|
||||
|
||||
$$
|
||||
C_x(m)=R_x(m)-\mu_x^2
|
||||
$$
|
||||
|
||||
$$
|
||||
C_x(0)=R_x(0)-\mu_x^2=E\{x^2(n)\}-\mu_x^2 = \sigma_x^2
|
||||
$$
|
||||
|
||||
4. 在**非周期平稳序列**上,随机变量在时间越来越远后,相关性变得越来越弱,$m \rightarrow \infty$,可以认为不相关
|
||||
|
||||
$$
|
||||
R_x(\infty)=\lim_{m\rightarrow\infty}R_x(m)=\lim_{m\rightarrow\infty}E\{x(n)x(m+n)\} = E\{x(n)\}E\{x(n+m)\}=\mu_x^2
|
||||
$$
|
||||
|
||||
5. 平稳信号**不含相位信息**
|
||||
|
||||
$$
|
||||
y(n)=x(n-l)
|
||||
$$
|
||||
|
||||
$$
|
||||
R_y(m)=R_x(m),C_y(m)=C_x(m)
|
||||
$$
|
||||
|
||||
6. 本质性质,**正定性(Positive Definiteness)**
|
||||
|
||||
**Positive Definiteness Matrix**
|
||||
|
||||
$$
|
||||
A\in R^{n\times n},\text{ so, it have any vector } \alpha\in R^n: \\
|
||||
\alpha^T A \alpha \geq 0
|
||||
$$
|
||||
|
||||
将正定性推广到相关函数,有随机变量$X=[x(1),x(2),\cdots,x(n)]^T,$ 则存在相关矩阵$R$,
|
||||
|
||||
$$
|
||||
R=\begin{bmatrix}
|
||||
R(0) & \cdots & R(-n) \\
|
||||
\vdots & \ddots & \vdots \\
|
||||
R(n) & \cdots & R(0)
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
存在任意向量$\alpha \in R^n$
|
||||
|
||||
$$
|
||||
\alpha^T R \alpha \geq0
|
||||
$$
|
||||
|
||||
从频域角度来看,Bochner:
|
||||
|
||||
若$f(x)$正定,则等价于:
|
||||
|
||||
$$
|
||||
\mathcal{F}(f(x)) = \int_{-\infty}^{\infty}f(x)e^{-j\omega x}dx \geq 0
|
||||
$$
|
||||
|
||||
其傅里叶变换始终大于0
|
||||
|
||||
# Reference
|
||||
|
||||
* https://pinkr1ver.notion.site/Autocorrelation-Analysis-Power-Spectral-Density-330755770347472989062c6b31f18a21?pvs=4
|
||||
* https://www.youtube.com/watch?v=qtaqvPAeEJY&t=24s
|
||||
@ -0,0 +1,9 @@
|
||||
---
|
||||
title: Autocorrelation to Detect Period
|
||||
tags:
|
||||
- statistics
|
||||
- math
|
||||
- advanced
|
||||
- signal-processing
|
||||
date: 2024-04-15
|
||||
---
|
||||
@ -65,3 +65,5 @@ Let's see the vertical subsystem of the oscilloscope. The basic form of an analo
|
||||
# Reference
|
||||
|
||||
* https://www.linkedin.com/pulse/working-principle-indicators-oscilloscope-1-na-wang-6pkmc/
|
||||
* https://zhuanlan.zhihu.com/p/672667254
|
||||
* https://zhuanlan.zhihu.com/p/393063086
|
||||
@ -41,3 +41,16 @@ date: 2024-03-18
|
||||
|
||||
* [Gaussian Impulse Generating](signal_processing/impulse_generating/gaussian_impulse.md)
|
||||
|
||||
|
||||
## Autocorrelation
|
||||
|
||||
* [Autocorrelation in Signal Processing](signal_processing/advanced_statistic/autocorrelation/autocorrelation.md)
|
||||
* [Autocorrelation to Detect Period](signal_processing/advanced_statistic/autocorrelation/period_detect.md)
|
||||
|
||||
# Software
|
||||
|
||||
## CST MWS
|
||||
|
||||
* [CST MWS Basic](signal_processing/software/simulation/CST/basic.md)
|
||||
|
||||
|
||||
|
||||
@ -0,0 +1,9 @@
|
||||
---
|
||||
title: Basic about CST Microwave Studio (MWS)
|
||||
tags:
|
||||
- software
|
||||
- "#signal-processing"
|
||||
- "#signal"
|
||||
date: 2024-04-15
|
||||
---
|
||||
CST WMS是一款专业的三维电磁仿真软件,专门用于提供**高频**问题的快速和精确的三维电磁仿真。
|
||||